Characteristics of Pyrolysis-Oxidation Reactions of Merey Crude Oil in Air and Nitrogen
- Corresponding author: ZHANG Qingxuan, zhangqx@upc.edu.cn
Citation:
ZHANG Qingxuan, LI Jintao, ZHANG Meng. Characteristics of Pyrolysis-Oxidation Reactions of Merey Crude Oil in Air and Nitrogen[J]. Chinese Journal of Applied Chemistry,
;2018, 35(12): 1470-1477.
doi:
10.11944/j.issn.1000-0518.2018.12.180029
Castanier L M, Brigham W E. Upgrading of Crude Oil via in Situ Combustion[J]. J Pet Sci Eng, 2003,39(1):125-136.
Manrique E, Thomas C, Ravikiran R, et al. EOR: Current Status and Opportunities[C]//2010 SPE Improved Oil Recovery Symposium. Society of Petroleum Engineers, Tulsa, Oklahoma, USA, 2010: 1-21.
Turta A T, Chattopadhyay S K, Bhattacharya R N. Current Status of Commercial in Situ Combustion Projects Worldwide[J]. J Can Petrol Technol, 2007,46(11):8-14.
Chattopadhyay S K, Binay R, Bhattacharya R N, et al. Enhanced Oil Recovery by in-situ Combustion Process in Santhal Field of Cambay Basin, Mehsana, Gujarat, India-A Case Study[C]//SPE/DOE Symposium on Improved Oil Recovery, 17-21 April, Tulsa, Oklahoma, 2004.
Yuan C D, Pu W F, Jin F Y. Characterizing the Fuel Deposition Process of Crude Oil Oxidation in Air Injection[J]. Energy Fuels, 2015,29(11):7622-7629. doi: 10.1021/acs.energyfuels.5b01493
Khansari Z. Low Temperature Oxidation of Heavy Crude Oil: Experimental Study and Reaction Modeling[D]. Calgary: University of Calgary, 2014.
Kok M V, Gundogar A S. DSC Study on Combustion and Pyrolysis Behaviors of Turkish Crude Oils[J]. Fuel Process Technol, 2013,116(6):110-115.
Khansari Z, Kapadia P, Mahinpey N. A New Reaction Model for Low Temperature Oxidation of Heavy Oil:Experiments and Numerical Modeling[J]. Energy, 2014,64(1):419-428.
Hussain A. Influence of Chemical Reactions on in Situ Combustion: A Simulation Study[D]. Delft: Delft University of Technology, 2011.
Niu B L, Ren S R, Liu Y H. Low Temperature Oxidation of Oil Components in an Air Injection Process for Improved Oil Recovery[J]. Energy Fuels, 2011,25(10):4299-4304. doi: 10.1021/ef200891u
Freitag N P. Evidence that Naturally Occurring Inhibitors Affect the Low Temperature Oxidation Kinetics of Heavy Oil[J]. J Can Petrol Technol, 2010,49(7):36-41. doi: 10.2118/138970-PA
Gui B, Yang Q Y, Wu H J. Study of the Effect of Low Temperature Oxidation on the Chemical Composition of a Light Crude Oil[J]. Energy Fuels, 2010,24(2):1139-1145.
Murugan P, Mahinpey N, Mani T. Effect of Low Temperature Oxidation on the Pyrolysis and Combustion of Whole Oil[J]. Energy, 2010,35(5):2317-2322. doi: 10.1016/j.energy.2010.02.022
Al-Saffar H B, Hasanin H, Price D. Oxidation Reactions of a Light Crude Oil and Its SARA Fractions in Consolidated Cores[J]. Energy Fuels, 2001,15(1):182-188.
Hu J, Ni J H, Pu W F. New View on the Oxidation Mechanisms of Crude Oil Through Combined Thermal Analysis Methods[J]. J Therm Anal Calorim, 2014,118(3):1707-1714.
Alexandra U, Vladislav Z, Mikhail V. Study of the Radical Chain Mechanism of Hydrocarbon Oxidation for in Situ Combustion Process[J]. J Combust, 2017(2017):1-11.
Karacan O, Kok M V. Pyrolysis Analysis of Crude Oils and Their Fractions[J]. Energy Fuels, 1997,11(2):385-391.
Castano L C U. Coke Formation During Thermal Cracking of a Heavy Oil[D]. Medellin: Universidad Nacional de Colombia, 2015.
Murugan P, Mani T, Mahinpey N. Pyrolysis Kinetics of Athabasca Bitumen Using a TGA under the Influence of Reservoir Sand[J]. Can J Chem Eng, 2012,90(2):315-319. doi: 10.1002/cjce.v90.2
Kapadia P R, Kallos M S, Gates I D. A New Kinetic Model for Pyrolysis of Athabasca Bitumen[J]. Can J Chem Eng, 2013,91(5):889-901. doi: 10.1002/cjce.v91.5
Jia N, Moore R G, Mehta S A. Kinetic Modeling of Thermal Cracking Reactions[J]. Fuel, 2009,88(8):1376-1382. doi: 10.1016/j.fuel.2009.01.010
Kok M V, Gul K G. Thermal Characteristics and Kinetics of Crude Oils and SARA Fractions[J]. Thermochim Acta, 2013,569(40):66-70.
Vyazovkin S, Chrissafis K, Lorenzo M L D. ICTAC Kinetics Committee Recommendations for Collecting Experimental Thermal Analysis Data for Kinetic Computations[J]. Thermochim Acta, 2014,590(19):1-23.
Pu W F, Yuan C D, Jin F Y. Low-Temperature Oxidation and Characterization of Heavy Oil via Thermal Analysis[J]. Energy Fuels, 2015,29(2):1151-1159.
DENG Wen'an, LIU Chenguang, MU Baoquan. Petroleum Chenistry Experiment Handouts[M]. Dongying:China University of Petroleum Press, 1999:1-7(in Chinese).
Karimian M, Schaffie M, Fazaelipoor M H. Determination of Activation Energy as a Function of Conversion for the Oxidation of Heavy and Light Crude Oils in Relation to in Situ Combustion[J]. J Therm Anal Calorim, 2016,125(1):301-311.
Yuan C D, Varfolomeev M A, Emelianov D A. Oxidation Behavior of Light Crude Oil and Its SARA Fractions Characterized by TG and DSC Techniques:Differences and Connections[J]. Energy Fuels, 2018,32(1):801-808.
Barckholtz T A. Modeling the Negative Temperature Coefficient in the Low Temperature Oxidation of Light Alkanes[J]. Prepr Pap-Am Chem Soc, Div Fuel Chem, 2003,48(2):518-519.
ZHU Wenbing. The Experimental Study on Combustion Kinetics and Pyrolysis Thermal Analysis in in-situ combustion[D]. Wuhan: Huazhong University of Science and Technology, 2009(in Chinese).
Bozzelli W J, Sheng C. Thermochemistry, Reaction Paths, and Kinetics on the Hydroperoxy-Ethyl Radical Reaction with O2:New Chain Branching Reactions in Hydrocarbon Oxidation[J]. J Phys Chem A, 2002,106(7):1113-1121. doi: 10.1021/jp013604d
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
Zihan Cheng , Kai Jiang , Jun Jiang , Henggang Wang , Hengwei Lin . Achieving thermal-stimulus-responsive dynamic afterglow from carbon dots by singlet-triplet energy gap engineering through covalent fixation. Acta Physico-Chimica Sinica, 2026, 42(2): 100169-0. doi: 10.1016/j.actphy.2025.100169
Yang Lv , Yingping Jia , Yanhua Li , Hexiang Zhong , Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, 2024, 39(11): 44-51. doi: 10.12461/PKU.DXHX202402059
Yang ZHOU , Lili YAN , Wenjuan ZHANG , Pinhua RAO . Thermal regeneration of biogas residue biochar and the ammonia nitrogen adsorption properties. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1574-1588. doi: 10.11862/CJIC.20250032
Zehua Zhao , Xiaoyan An , Jinrong Xu , Ling Yang , Hao Zhao , Zhongyun Wu . Independent Development and Application of Calorimetric Experiment Data Acquisition and Processing Software. University Chemistry, 2025, 40(11): 402-408. doi: 10.12461/PKU.DXHX202505045
Limei CHEN , Mengfei ZHAO , Lin CHEN , Ding LI , Wei LI , Weiye HAN , Hongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312
Yuting Bai , Cenqi Yan , Zhen Li , Jiaqiang Qin , Pei Cheng . Preparation of High-Strength Polyimide Porous Films with Thermally Closed Pore Property by In Situ Pore Formation Method. Acta Physico-Chimica Sinica, 2024, 40(9): 2306010-0. doi: 10.3866/PKU.WHXB202306010
Yongqing Xu , Yuyao Yang , Mengna Wu , Xiaoxiao Yang , Xuan Bie , Shiyu Zhang , Qinghai Li , Yanguo Zhang , Chenwei Zhang , Robert E. Przekop , Bogna Sztorch , Dariusz Brzakalski , Hui Zhou . Review on Using Molybdenum Carbides for the Thermal Catalysis of CO2 Hydrogenation to Produce High-Value-Added Chemicals and Fuels. Acta Physico-Chimica Sinica, 2024, 40(4): 2304003-0. doi: 10.3866/PKU.WHXB202304003
Yahui HAN , Jinjin ZHAO , Ning REN , Jianjun ZHANG . Synthesis, crystal structure, thermal decomposition mechanism, and fluorescence properties of benzoic acid and 4-hydroxy-2, 2′: 6′, 2″-terpyridine lanthanide complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 969-982. doi: 10.11862/CJIC.20240395
Mingjie Lei , Wenting Hu , Kexin Lin , Xiujuan Sun , Haoshen Zhang , Ye Qian , Tongyue Kang , Xiulin Wu , Hailong Liao , Yuan Pan , Yuwei Zhang , Diye Wei , Ping Gao . Accelerating the reconstruction of NiSe2 by Co/Mn/Mo doping for enhanced urea electrolysis. Acta Physico-Chimica Sinica, 2025, 41(8): 100083-0. doi: 10.1016/j.actphy.2025.100083
Jiahe LIU , Gan TANG , Kai CHEN , Mingda ZHANG . Effect of low-temperature electrolyte additives on low-temperature performance of lithium cobaltate batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 719-728. doi: 10.11862/CJIC.20250023
Meiyu Lin , Yuxin Fang , Songzhang Shen , Yaqian Duan , Wenyi Liang , Chi Zhang , Juan Su . Exploration and Implementation of a Dual-Pathway Blended Teaching Model in General Chemistry Experiment Course: A Case Study of Copper Glycine Synthesis and Its Thermal Analysis. University Chemistry, 2024, 39(8): 48-53. doi: 10.3866/PKU.DXHX202312042
Rohit Kumar , Anita Sudhaik , Aftab Asalam Pawaz Khan , Van Huy Neguyen , Archana Singh , Pardeep Singh , Sourbh Thakur , Pankaj Raizada . Designing tandem S-scheme photo-catalytic systems: Mechanistic insights, characterization techniques, and applications. Acta Physico-Chimica Sinica, 2025, 41(11): 100150-0. doi: 10.1016/j.actphy.2025.100150
Zhiwen HU , Weixia DONG , Qifu BAO , Ping LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462
Yuping Wei , Yiting Wang , Jialiang Jiang , Jinxuan Deng , Hong Zhang , Xiaofei Ma , Junjie Li . Interdisciplinary Teaching Practice——Flexible Wearable Electronic Skin for Low-Temperature Environments. University Chemistry, 2024, 39(10): 261-270. doi: 10.12461/PKU.DXHX202404007
Yanzhe WANG , Xiaoming GUO , Qiangsheng GUO , Liang LI , Bin LU , Peihang YE . Effect of Ce introduction on the low-temperature performance of NiAl catalyst for CO2 methanation. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2218-2228. doi: 10.11862/CJIC.20250202
Yanhui Zhong , Ran Wang , Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017
Xu Long , Shuan Zhang , Qinghua Meng , Xiaorong Li . Practice of Ideological and Political Education in Analytical Chemistry from the Perspective of New Medicine: Redox Titration. University Chemistry, 2025, 40(11): 108-114. doi: 10.12461/PKU.DXHX202412025
Kexin Yan , Zhaoqi Ye , Lingtao Kong , He Li , Xue Yang , Yahong Zhang , Hongbin Zhang , Yi Tang . Seed-Induced Synthesis of Disc-Cluster Zeolite L Mesocrystals with Ultrashort c-Axis: Morphology Control, Decoupled Mechanism, and Enhanced Adsorption. Acta Physico-Chimica Sinica, 2024, 40(9): 2308019-0. doi: 10.3866/PKU.WHXB202308019
Tingting Jiang , Jing Chang . Application of Ideological and Political Education in Chemical Analysis Experiment under the Background of Emerging Engineering Education: Taking the Redox Titration Experiment as an Example. University Chemistry, 2024, 39(2): 168-174. doi: 10.3866/PKU.DXHX202308007