Citation: YIN Zhengri. A Renewable High Selective Fluorescent Probe for Hydrogen Sulfide[J]. Chinese Journal of Applied Chemistry, ;2018, 35(12): 1514-1520. doi: 10.11944/j.issn.1000-0518.2018.12.180026 shu

A Renewable High Selective Fluorescent Probe for Hydrogen Sulfide

  • Corresponding author: YIN Zhengri, yinzhengri@ybu.edu.cn
  • Received Date: 29 January 2018
    Revised Date: 7 March 2018
    Accepted Date: 28 March 2018

    Fund Project: the National Natural Science Foundation of China 21262039Supported by the National Natural Science Foundation of China(No.21262039)

Figures(7)

  • For expedient detection of H2S in environmental samples, a renewable H2S fluorescent probe(1-Cu2+) was constructed based on a complex formed by coumarin hydrazide oxime fluorescent ligand and a Cu2+. The probe displays very weak emission owing to quenching effect of Cu2+. The emission could be enhanced in the presence of S2-, but no obvious changes in fluorescence intensity were observed upon the addition of other relevant anionic analytes(F-, Cl-, Br-, I-, CO32-, HPO42-, H2PO4-, NO2-, NO3-, SO42-, CH3COO-, N3-, S2O32-, CN-). That is to say the probe system exhibits a remarkably selective fluorescence "ON" behavior exclusively with sulfide. The probe could be regenerated by the addition of Cu2+, and therefore the probe could be utilized repeatedly to sense sulfide anions with Cu2+ and S2-. The detection limit of the fluorescent assay for sulfide is as low as ~37.0 nmol/L with a rapid response time(a few seconds), and the linear range is 0.5~4.0 μmol/L.
  • 加载中
    1. [1]

      Szabo C. Hydrogen Sulphide and Its Therapeutic Potential[J]. Nat Rev Drug Discov, 2007,6(11):917-935. doi: 10.1038/nrd2425

    2. [2]

      Koshland D E. The Molecule of the Year[J]. Science, 1992,258(5090)1861. doi: 10.1126/science.1470903

    3. [3]

      Morita T, Perrella M A, Lee M E. Smooth-Muscle Cell-derived Carbon-Monoxide is a Regulator of Vascular cGMP[J]. Proc Natl Acad Sci USA, 1995,92(5):1475-1479. doi: 10.1073/pnas.92.5.1475

    4. [4]

      Gadalla M M, Snyder S H. Hydrogen Sulfide as a Gasotransmitter[J]. J Neurochem, 2010,113(1):14-26. doi: 10.1111/jnc.2010.113.issue-1

    5. [5]

      Abe K, Kimura H. The Possible Role of Hydrogen Sulfide as an Endogenous Neuromodulator[J]. J Neurosci, 1996,16(3):1066-1071.  

    6. [6]

      Beauchamp R O, Bus J S, Popp J A. A Critical-Review of the Literature on Hydrogen-Sulfide Toxicity[J]. Crit Rev Toxicol, 1984,13(1):25-97. doi: 10.3109/10408448409029321

    7. [7]

      Reiffenstein R J, Hulbert W C, Roth S H. Toxicology of Hydrogen-Sulfide[J]. Annu Rev Pharmacol Toxicol, 1992,32(1):109-134. doi: 10.1146/annurev.pa.32.040192.000545

    8. [8]

      Moore P K, Bhatia M, Moochhala S. Hydrogen Sulfide:From the Smell of the Past to the Mediator of the Future[J]. Trends Pharmacol Sci, 2003,24(12):609-611. doi: 10.1016/j.tips.2003.10.007

    9. [9]

      Boehning D, Snyder S H. Novel Neural Modulators[J]. Annu Rev Neurosci, 2003,26(1):105-131. doi: 10.1146/annurev.neuro.26.041002.131047

    10. [10]

      Li L, Rose P, Moore P K. Hydrogen Sulfide and Cell Ssignaling[J]. Annu Rev Pharmacol Toxicol, 2011,51:169-187. doi: 10.1146/annurev-pharmtox-010510-100505

    11. [11]

      Pawlak Z, Pawlak A S. Modification of Iodometric Determination of Total and Reactive Sulfide in Environmental Samples[J]. Talanta, 1999,48(2):347-353. doi: 10.1016/S0039-9140(98)00253-7

    12. [12]

      Lei W, Dasgupta P K. Determination of Sulfide and Mercaptans in Caustic Scrubbing Liquor[J]. Anal Chim Acta, 1989,226(1):165-170.  

    13. [13]

      Hughes M N, Centelles M N, Moore K P. Making and Working with Hydrogen Sulfide:The Chemistry and Generation of Hydrogen Sulfide in Vitro and Its Measurement in Vivo:A review[J]. Free Radical Biol Med, 2009,47(10):1346-1353. doi: 10.1016/j.freeradbiomed.2009.09.018

    14. [14]

      Choi M G, Cha S, Lee H. Sulfide-Selective Chemosignaling by a Cu2+ Complex of Dipicolylamine Appended Fluorescein[J]. Chem Commun, 2009,38(47):7390-7392.  

    15. [15]

      Pouly F, Touraud E, Buisson J F. An Alternative Method for the Measurement of Mineral Sulphide in Wastewater[J]. Talanta, 1999,50(4):737-742. doi: 10.1016/S0039-9140(99)00201-5

    16. [16]

      Guenther E A, Johnson K S, Coale K H. Direct Ultraviolet Spectrophotometric Determination of Total Sulfide and Iodide in Natural Waters[J]. Anal Chem, 2001,73(14):481-3487.  

    17. [17]

      Lawrence N S, Davis J, Jiang L. The Electrochemical Analog of the Methylene Blue Reaction:A Novel Amperometric Approach to the Detection of Hydrogen Sulfide[J]. Electroanalysis, 2000,12(18):1453-1460. doi: 10.1002/(ISSN)1521-4109

    18. [18]

      Doeller J E, Isbell T S, Benavides G. Polarographic Measurement of Hydrogen Sulfide Production and Consumption by Mammalian Tissues[J]. Anal Biochem, 2005,341(1):40-51.  

    19. [19]

      Radfordknoery J, Cutter G A. Determination of Carbonyl Sulfide and Hydrogen-Sulfide Species in Natural-Waters Using Specialized Collection Procedures and Gas-Chromatography with Flame Photometric Detection[J]. Anal Chem, 1993,65(8):976-982. doi: 10.1021/ac00056a005

    20. [20]

      Ubuka T, Abe T, Kajikawa R. Determination of Hydrogen Sulfide and Acid-Labile Sulfur in Animal Tissues by Gas Chromatography and Ion Chromatography[J]. J Chromatogr B:Biomed Sci Appl, 2001,757(1):31-37. doi: 10.1016/S0378-4347(01)00046-9

    21. [21]

      Kabil O, Banerjee R. Redox Biochemistry of Hydrogen Sulfide[J]. J Biol Chem, 2010,285(29):21903-21907. doi: 10.1074/jbc.R110.128363

    22. [22]

      Olson K R. Is Hydrogen Sulfide A Circulating "Gasotransmitter" in Vertebrate Blood?[J]. Biochim Biophys Acta Bioenerg, 2009,1787(7):856-863. doi: 10.1016/j.bbabio.2009.03.019

    23. [23]

      Wang X, Sun J, Zhang W. A Near-Infrared Ratiometric Fluorescent Probe for Rapid and Highly Sensitive Imaging of Endogenous Hydrogen Sulfide in Living Cells[J]. Chem Sci, 2013,4(6):2551-2556. doi: 10.1039/c3sc50369k

    24. [24]

      Liu C, Pan J, Li S. Capture and Visualization of Hydrogen Sulfide by a Fluorescent Probe[J]. Angew Chem Int Ed, 2011,123(44):10511-10513. doi: 10.1002/ange.v123.44

    25. [25]

      Wu M Y, Li K, Hou J T. A Selective Colorimetric and Ratiometric Fluorescent Probe for Hydrogen Sulfide[J]. Org Biomol Chem, 2012,10(41):8342-8347. doi: 10.1039/c2ob26235e

    26. [26]

      Peng H, Cheng Y, Dai C. A Fluorescent Probe for Fast and Quantitative Detection of Hydrogen Sulfide in Blood[J]. Angew Chem Int Ed, 2011,50(41):9672-9675. doi: 10.1002/anie.201104236

    27. [27]

      Sasakura K, Hanaoka K, Shibuya N. Development of a Highly Selective Fluorescence Probe for Hydrogensulfid[J]. J Am Chem Soc, 2011,133(45):18003-18005. doi: 10.1021/ja207851s

    28. [28]

      Wu X, Li H, Kan Y. A Regeneratable and Highly Selective Fluorescent Probe for Sulfide Detection in Aqueous Solution[J]. Dalton Trans, 2013,42:16302-16310. doi: 10.1039/c3dt51953h

    29. [29]

      Ma W, Xu Q, Du J, Song B. A Hg2+-Selective Chemodosimeter Based on Desulfurization of Coumarin Thiosemicarbazide in Aqueous Media[J]. Spectrochim Acta Part A, 2010,76:248-252. doi: 10.1016/j.saa.2010.03.028

    30. [30]

      Lim M H, Wong B A, Pitcock W H. Direct Nitric Oxide Detection in Aqueous Solution by Copper(Ⅱ) Fluorescein Complexes[J]. J Am Chem Soc, 2006,128(44):14364-14373. doi: 10.1021/ja064955e

    31. [31]

      Shen G L, Yu R Q. A Porphyrin Derivative Containing 2-(Oxymethyl)pyridine Units Showing Unexpected Ratiometric Fluorescent Recognition of Zn2+ with High Selectivity[J]. Anal Chim Acta, 2008,616(2):214-221.  

    32. [32]

      Li Z, Lou X, Yu H. An Imidazole-Functionalized Polyfluorene Derivative as Sensitive Fluorescent Probe for Metal Ions and Cyanide[J]. Macromolecules, 2008,41(20):7433-7439. doi: 10.1021/ma8013096

    33. [33]

      Xie Y S, Wei P C, Li X. Macrocycle Contraction and Expansion of Dihydrosapphyrin Isomer[J]. J Am Chem Soc, 2013,135(51):19119-19122. doi: 10.1021/ja4112644

  • 加载中
    1. [1]

      Zhaodong WANGIn situ synthesis, crystal structure, and magnetic characterization of a trinuclear copper complex based on a multi-substituted imidazo[1,5-a]pyrazine scaffold. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 597-604. doi: 10.11862/CJIC.20240268

    2. [2]

      Linfang ZHANGWenzhu YINGui YIN . A 2-dicyanomethylene-3-cyano-4,5,5-trimethyl-2,5-dihydrofuran-based near-infrared fluorescence probe for the detection of hydrogen sulfide and imaging of living cells. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 540-548. doi: 10.11862/CJIC.20240405

    3. [3]

      Ya-Ping LiuZhi-Rong GuiZhen-Wen ZhangSai-Kang WangWei LangYanzhu LiuQian-Yong Cao . A phenylphenthiazide anchored Tb(Ⅲ)-cyclen complex for fluorescent turn-on sensing of ClO. Chinese Chemical Letters, 2025, 36(2): 109769-. doi: 10.1016/j.cclet.2024.109769

    4. [4]

      Ji Qi Jianan Zhu Yanxu Zhang Jiahao Yang Chunting Zhang . Visible Color Change of Copper (II) Complexes in Reversible SCSC Transformation: The Effect of Structure on Color. University Chemistry, 2024, 39(3): 43-57. doi: 10.3866/PKU.DXHX202307050

    5. [5]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    6. [6]

      Qin Hou Jiayi Hou Aiju Shi Xingliang Xu Yuanhong Zhang Yijing Li Juying Hou Yanfang Wang . Preparation of Cuprous Iodide Coordination Polymer and Fluorescent Detection of Nitrite: A Comprehensive Chemical Design Experiment. University Chemistry, 2024, 39(8): 221-229. doi: 10.3866/PKU.DXHX202312056

    7. [7]

      Cheng Zheng Shiying Zheng Yanping Zhang Shoutian Zheng Qiaohua Wei . Synthesis, Copper Content Analysis, and Luminescent Performance Study of Binuclear Copper (I) Complexes with Isomeric Luminescence Shift: A Comprehensive Chemical Experiment Recommendation. University Chemistry, 2024, 39(7): 322-329. doi: 10.3866/PKU.DXHX202310131

    8. [8]

      Jie ZHANGXin LIUZhixin LIYuting PEIYuqi YANGHuimin LIZhiqiang LIU . Assembling a luminescence silencing system based on post-synthetic modification strategy: A highly sensitive and selective turn-on metal-organic framework probe for ascorbic acid detection. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 823-833. doi: 10.11862/CJIC.20230310

    9. [9]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    10. [10]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    11. [11]

      Liyang ZHANGDongdong YANGNing LIYuanyu YANGQi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079

    12. [12]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

    13. [13]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    14. [14]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    15. [15]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    16. [16]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    17. [17]

      Mingyang Men Jinghua Wu Gaozhan Liu Jing Zhang Nini Zhang Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019

    18. [18]

      Zhicheng JUWenxuan FUBaoyan WANGAo LUOJiangmin JIANGYueli SHIYongli CUI . MOF-derived nickel-cobalt bimetallic sulfide microspheres coated by carbon: Preparation and long cycling performance for sodium storage. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 661-674. doi: 10.11862/CJIC.20240363

    19. [19]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    20. [20]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

Metrics
  • PDF Downloads(2)
  • Abstract views(779)
  • HTML views(165)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return