Citation: MAO Juezhen, ZHOU Jinsong, LI Xueqian, ZHOU Qixin, CAO Hui. Mechanism of Mercury Removal in Syngas by Co-modified Activated Coke with H2S[J]. Chinese Journal of Applied Chemistry, ;2018, 35(12): 1497-1506. doi: 10.11944/j.issn.1000-0518.2018.12.180016 shu

Mechanism of Mercury Removal in Syngas by Co-modified Activated Coke with H2S

  • Corresponding author: ZHOU Jinsong, zhoujs@zju.edu.cn
  • Received Date: 18 January 2018
    Revised Date: 1 March 2018
    Accepted Date: 12 March 2018

    Fund Project: Supported by the National Natural Science Foundation of China(No.51576173)the National Natural Science Foundation of China 51576173

Figures(10)

  • Activated coke modified with cobalt(Co-AC) were prepared through impregnation and high temperature calcination method, and then characterized by BET(Brunauer-Emmett-Teller), XRD(X-ray diffraction) analysis. The adsorption of gas-phase elemental mercury by Co-AC under nitrogen and simulated syngas(N2, H2, CO, H2S) was studied on a bench-scale fixed-bed apparatus and focus on the influence of H2S. The results show that 5%Co-AC exhibits excellent Hg0 removal capacity at 120℃ and 97.8% of Hg0 can be removed in the presence of H2S. In addition, based on the density functional theory, the adsorption energy and bond length of H2S, HS and S on Co3O4 (110) surface were calculated. Firstly, H2S will dissociate into HS and S in turn by comparing the bond length of H-S. Secondly the adsorption characteristic of Hg was calculated on S-Co3O4(110). The results indicate that Hg reacts with S to form a stable HgS with an adsorption energy of -3.503 eV and the adsorption of Hg follows Eley-Rideal mechanism.With an elevated temperature, mercury removal is suppressed, because the amount of active sulfurs on the surface decreases and the interaction between Hg and S is weakened. The reaction mechanism of Hg0 removal on the surface of cobalt-based adsorbents in the presence of H2S was proved. This provides a theoretical guidance for synergistic removal of H2S and Hg0 in coal gas.
  • 加载中
    1. [1]

      Bergeron C M, Bodinof C M, Unrine J M. Mercury Accumulation Along a Contamination Gradient and Nondestructive Indices of Bioaccumulation in Amphibians[J]. Environ Toxicol Chem, 2010,29(4):980-988. doi: 10.1002/etc.v29:4

    2. [2]

      WANG Fuchen, YU Guangsuo, GONG Xin. Research and Development of Large-Scale Coal Gasification Technology[J]. Chem Ind Eng Prog, 2009,28(2):173-180. doi: 10.3321/j.issn:1000-6613.2009.02.001

    3. [3]

      Dennis Y L, David L G, Donald J R. Study of Mercury Speciation from Simulated Coal Gasification[J]. Ind Eng Chem Res, 2004,43(17):5400-5404. doi: 10.1021/ie034121u

    4. [4]

      Guo X S, Wang Z. Excellent Characteristics and Benefit of IGCC Power Plant for Environment Protection[J]. Gas Turbine Technol, 2005,18(3):8-12.  

    5. [5]

      Granite E J, Myers C R, King W P. Sorbents for Mercury Capture from Fuel Gas with Application to Gasification Systems[J]. Ind Eng Chem Res, 2006,45(13):4844-4848. doi: 10.1021/ie060456a

    6. [6]

      Poulston S, Granite E J, Pennline H W. Metal Sorbents for High Temperature Mercury Capture from Fuel Gas[J]. Fuel, 2007,86(14):2201-2203. doi: 10.1016/j.fuel.2007.05.015

    7. [7]

      Hou W, Zhou J, Yu C. Pd/Al2O3 Sorbents for Elemental Mercury Capture at High Temperatures in Syngas[J]. Ind Eng Chem Res, 2014,53(23):9909-9914. doi: 10.1021/ie501292a

    8. [8]

      Wu S, Uddin M A, Sasaoka E. Characteristics of the Removal of Mercury Vapor in Coal Derived Fuel Gas over Iron Oxide Sorbents[J]. Fuel, 2006,85(2):213-218. doi: 10.1016/j.fuel.2005.01.020

    9. [9]

      HUA Xiaoyu. Mechanism Research on Simultaneous SO2 and Mercury Removal Based on Activated Coke Modification[D]. Hangzhou: Zhejiang University, 2011(in Chinese). 

    10. [10]

      ZHENG Xianrong. Preparation of Zn-Mn-Cu Based Sorbents Loaded on Semi-Coke by High-Pressure Impregnation and the Performance of Removing H2S from Coal Gas at Mid-Temperature[D]. Taiyuan: Taiyuan University of Technology, 2012(in Chinese). 

    11. [11]

      JIN Qingmai. Study on Sulfidation Performance of Zn/Mn/Cu-Based Sorbent Supported on Semi-Coke in Medium Temperature Coal Gas[D]. Taiyuan: Taiyuan University of Technology, 2010(in Chinese). 

    12. [12]

      ZHOU Jinsong, QI Pan, HOU Wenhui. Elemental Mercury Removal from Syngas by Nano-ZnO Sorbent[J]. J Fule Chem Technol, 2013,41(11):1371-1377.  

    13. [13]

      Li Y H, Lee C W, Gullett B K. Importance of Activated Carbon's Oxygen Surface Functional Groups on Elemental Mercury Adsorption[J]. Fuel, 2003,82(4):451-457. doi: 10.1016/S0016-2361(02)00307-1

    14. [14]

      Wang Y, Duan Y. Effect of Manganese Ions on the Structure of Ca(OH)2 and Mercury Adsorption Performance of Mnx+/Ca(OH)2 Composites[J]. Energy Fuels, 2011,25(4):1553-1558. doi: 10.1021/ef200113t

    15. [15]

      Evan J Granite, Henry W Pennline, Richard A Hargis. Novel Sorbents for Mercury Removal from Flue Gas[J]. Ind Eng Chem Res, 1998,39(4):1020-1029.  

    16. [16]

      Li H, Wu C Y, Li Y. CeO2-TiO2 Catalysts for Catalytic Oxidation of Elemental Mercury in Low-rank Coal Combustion Flue Gas[J]. Environ Sci Technol, 2011,45(17):7394-400. doi: 10.1021/es2007808

    17. [17]

      Kresse G, Furthmüller J. Efficient Iterative Schemes for Ab Initio Total-energy Calculations Using a Plane-wave Basis Set[J]. Phys Rev B Condens Matter, 1996,54(16):11169-11186. doi: 10.1103/PhysRevB.54.11169

    18. [18]

      Perdew J P, Chevary J A, Vosko S H. Erratum:Atoms, Molecules, Solids, and Surfaces:Applications of the Generalized Gradient Approximation for Exchange and Correlation[J]. Phys Rev B Condens Matter, 1992,46(11):6671-6687. doi: 10.1103/PhysRevB.46.6671

    19. [19]

      Perdew J P, Wang Y. Accurate and Simple Analytic Representation of the Electron-Gas Correlation Energy[J]. Phys Rev B Condens Matter, 1992,45(23):13244-13249. doi: 10.1103/PhysRevB.45.13244

    20. [20]

      Blochl P. Projected Augmented-wave Method[J]. Phys Rev B Condens Matter, 1994,50(24):17953-17979. doi: 10.1103/PhysRevB.50.17953

    21. [21]

      Kresse G, Joubert D. From Ultrasoft Pseudopotentials to the Projector Augmented-wave Method[J]. Phys Rev B Condens Matter, 1999,59(3):1758-1775. doi: 10.1103/PhysRevB.59.1758

    22. [22]

      LI Duichun. The First Principle Study of CO Adsorption and Reaction on Transition Metal and Metal Oxide Surfaces[D]. Taiyuan: Taiyuan University of Technology, 2011(in Chinese). 

    23. [23]

      He Z, Zhao J, Fang Y. Catalytic Oxidation and Stabilized Adsorption of Elemental Mercury from Coal-Derived Fuel Gas[J]. Energy Fuels, 2012,26(3):1629-1637. doi: 10.1021/ef201453d

    24. [24]

      Wei Liu, Vidic R D, Brown T D. Impact of Flue Gas Conditions on Mercury Uptake by Sulfur-Impregnated Activated Carbon[J]. Environ Sci Technol, 2000,34(34):154-159.  

  • 加载中
    1. [1]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    2. [2]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    3. [3]

      Shangqian ZhangJiaxuan LiXuan HuZelong ChenJunliang DongChenhao HuShuang ChaoYinghua LvYuxin PeiZhichao Pei . H2S and NIR light-driven nanomotors induce disulfidptosis for targeted anticancer therapy by enhancing disruption of tumor metabolic symbiosis. Chinese Chemical Letters, 2025, 36(1): 110314-. doi: 10.1016/j.cclet.2024.110314

    4. [4]

      Kaifu Zhang Shan Gao Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045

    5. [5]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    6. [6]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    7. [7]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    8. [8]

      Ping Song Nan Zhang Jie Wang Rui Yan Zhiqiang Wang Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087

    9. [9]

      Meifeng Zhu Jin Cheng Kai Huang Cheng Lian Shouhong Xu Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166

    10. [10]

      Jia-Mei QinXue LiWei LangFu-Hao ZhangQian-Yong Cao . An AIEgen nano-assembly for simultaneous detection of ATP and H2S. Chinese Chemical Letters, 2024, 35(6): 108925-. doi: 10.1016/j.cclet.2023.108925

    11. [11]

      Yudi ChengXiao WangJiao ChenZihan ZhangJiadong OuMengyao SheFulin ChenJianli Li . A near-infrared fluorescent probe for visualizing transformation pathway of Cys/Hcy and H2S and its applications in living system. Chinese Chemical Letters, 2024, 35(5): 109156-. doi: 10.1016/j.cclet.2023.109156

    12. [12]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    13. [13]

      Qiqi Li Su Zhang Yuting Jiang Linna Zhu Nannan Guo Jing Zhang Yutong Li Tong Wei Zhuangjun Fan . 前驱体机械压实制备高密度活性炭及其致密电容储能性能. Acta Physico-Chimica Sinica, 2025, 41(3): 2406009-. doi: 10.3866/PKU.WHXB202406009

    14. [14]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    15. [15]

      Bo YANGGongxuan LÜJiantai MA . Corrosion inhibition of nickel-cobalt-phosphide in water by coating TiO2 layer. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 365-384. doi: 10.11862/CJIC.20240063

    16. [16]

      Bin FangJiaqi YangLimin WangHaoqin LiJiaying GuoJiaxin ZhangQingyuan GuoBo PengKedi LiuMiaomiao XiHua BaiLi FuLin Li . A mitochondria-targeted H2S-activatable fluorogenic probe for tracking hepatic ischemia-reperfusion injury. Chinese Chemical Letters, 2024, 35(6): 108913-. doi: 10.1016/j.cclet.2023.108913

    17. [17]

      Bicheng Zhu Jingsan Xu . S-scheme heterojunction photocatalyst for H2 evolution coupled with organic oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100327-100327. doi: 10.1016/j.cjsc.2024.100327

    18. [18]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    19. [19]

      Yadan Luo Hao Zheng Xin Li Fengmin Li Hua Tang Xilin She . 调节O,S共掺杂C3N4中的活性氧生成以促进光催化降解微塑料. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-. doi: 10.1016/j.actphy.2025.100052

    20. [20]

      Yi Yang Xin Zhou Miaoli Gu Bei Cheng Zhen Wu Jianjun Zhang . S型ZnO/CdIn2S4光催化剂制备H2O2偶联苄胺氧化的超快电子转移飞秒吸收光谱研究. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-. doi: 10.1016/j.actphy.2025.100064

Metrics
  • PDF Downloads(1)
  • Abstract views(487)
  • HTML views(78)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return