Citation: MENG Qingnan, DU Lulu, TANG Yufei, ZHAO Kang, ZHAO Lang. Preparation and Catalytic Properties of MnOX-C@SiO2 Core-Shell Particles[J]. Chinese Journal of Applied Chemistry, ;2018, 35(11): 1357-1363. doi: 10.11944/j.issn.1000-0518.2018.11.180235 shu

Preparation and Catalytic Properties of MnOX-C@SiO2 Core-Shell Particles

  • Corresponding author: MENG Qingnan, mengqn@xaut.edu.cn
  • Received Date: 5 July 2018
    Revised Date: 7 August 2018
    Accepted Date: 27 August 2018

    Fund Project: Supported by the National Natural Science Foundation of China(No.51502241)the National Natural Science Foundation of China 51502241

Figures(6)

  • To prepare catalysts with high activity in the Fenton reaction toward the decomposition of pollutants in water, SiO2 coated polyacrylate and manganese dioxide composite colloids (PAA-Mn@SiO2) were carbonized under N2 atmosphere. The synthesis process is very facile and effective. The as-prepared manganese oxides-carbon@SiO2 core shell type catalyst (MnOX-C@SiO2) was characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM), transmission electron microscope (TEM) and the specific surface area analysis. The results indicate that low-valenced manganese oxides (Mn3O4 and MnO) are formed in the MnOX-C@SiO2 due to the reductive atmosphere formed by the pyrolysis of PAA, which is beneficial for the enhancement of the catalytic performance in the Fenton reaction. In addition, the SiO2 shell not only effectively prevents the inside manganese oxide nanoparticles from getting larger but also stops the product from aggregating during carbonation. The carbon component in the core can further stabilize the manganese oxide nanoparticles and promote the enrichment of organic pollutants. The specific surface area of the MnOX-C@SiO2 is 317.3 m2/g, which is well dispersed in water. For the catalytic degradation of methylene blue (MB) solution via the Fenton process, the degradation rate of MB can reach ~96.8% only after 40 min.
  • 加载中
    1. [1]

      WU Zhongzheng, ZHU Weiju, WANG Dongmei. Preparation of Copper Oxide-Silica Porous Composites and Its Adsorption of Methylene Blue[J]. Chinese J Appl Chem, 2014,31(9):1089-1095.  

    2. [2]

      Debnath B, Roy A S, Kapri S. Efficient Dye Degradation Catalyzed by Manganese Oxide Nanoparticles and the Role of Cation Valence[J]. ChemistrySelect, 2016,1(14):4265-4273. doi: 10.1002/slct.201600806

    3. [3]

      Wang Y L, Zhu L, Yang X. Facile Synthesis of Three-Dimensional Mn3O4 Hierarchical Microstructures and Their Application in the Degradation of Methylene Blue[J]. J Mater Chem A, 2015,3(6):2934-2941. doi: 10.1039/C4TA05493H

    4. [4]

      Xu J H, Li D N, Chen Y. Constructing Sheet-On-Sheet Structured Graphitic Carbon Nitride/Reduced Graphene Oxide/Layered MnO2 Ternary Nanocomposite with Outstanding Catalytic Properties on Thermal Decomposition of Ammonium Perchlorate[J]. Nanomaterials, 2017,7(12):450-462. doi: 10.3390/nano7120450

    5. [5]

      Meng Q N, Du L L, Yang J. Well-Dispersed Small-Sized MnOx Nanoparticles and Porous Carbon Composites for Effective Methylene Blue Degradation[J]. Colloids Surf A, 2018,548:142-149. doi: 10.1016/j.colsurfa.2018.03.064

    6. [6]

      Meng Q N, Xiang S Y, Cheng W. Facile Synthesis of Manganese Oxide Loaded Hollow Silica Particles and Their Application for Methylene Blue Degradation[J]. J Colloid Interface Sci, 2013,405:28-34. doi: 10.1016/j.jcis.2013.05.025

    7. [7]

      Zhang S W, Fan Q H, Gao H. Formation of Fe3O4@MnO2 Ball-in-Ball Hollow Spheres as a High Performance Catalyst for Enhanced Catalytic Performances[J]. J Mater Chem A, 2016,4(4):1414-1422. doi: 10.1039/C5TA08400H

    8. [8]

      Rehman S, Tang T Y, Ali Z. Integrated Design of MnO2@Carbon Hollow Nanoboxes to Synergistically Encapsulate Polysulfdes for Empowering Lithium Sulfur Batteries[J]. Small, 2017,13(20):87-94.

    9. [9]

      Meng Q N, Wang K, Tang Y F. Facile Synthesis of Porous Flower-Like Co3O4-SiO2 Composite for Catalytic Decoloration of Rhodamine B[J]. ChemistrySelect, 2017,2(32):10442-10448. doi: 10.1002/slct.201701884

    10. [10]

      WANG Cui, ZHANG Feiyun, LYU Rongwen. Gold Nanopaticle Surface Energy Transfer and Its Application for Thiols Detection[J]. Chinese J Appl Chem, 2018,35(1):59-67.  

    11. [11]

      Meng Q N, Wang K, Tang Y F. One-Pot Synthesis of Fe2O3 Loaded SiO2 Hollow Particles as Effective Visible Light Photo-Fenton Catalyst[J]. J Alloys Compd, 2017,722:8-16. doi: 10.1016/j.jallcom.2017.06.077

    12. [12]

      Xu H M, Jia J P, Guo Y F. Design of 3D MnO2/Carbon Sphere Composite for the Catalytic Oxidation and Adsorption of Elemental Mercury[J]. J Hazard Mater, 2018,342:69-76. doi: 10.1016/j.jhazmat.2017.08.011

    13. [13]

      Wang X Q, Dou L Y, Yang L. Hierarchical Structured MnO2@SiO2 Nanofibrous Membranes with Superb Flexibility and Enhanced Catalytic Performance[J]. J Hazard Mater, 2017,324:203-212. doi: 10.1016/j.jhazmat.2016.10.050

    14. [14]

      Liu C Q, Li K Z, Li H J. The Effect of Zirconium Incorporation on the Thermal Stability and Carbonized Product of Phenol-Formaldehyde Resin[J]. Polym Degrad Stab, 2014,102:180-185. doi: 10.1016/j.polymdegradstab.2014.01.013

    15. [15]

      Xu J, Deng Y Q, Zhang X M. Preparation, Characterization, and Kinetic Study of a Core-Shell Mn3O4@SiO2 Nanostructure Catalyst for CO Oxidation[J]. ACS Catal, 2014,4(11):4106-4115. doi: 10.1021/cs5011376

    16. [16]

      Bai Z C, Sun B, Fan N. Branched Mesoporous Mn3O4 Nanorods:Facile Synthesis and Catalysis in the Degradation of Methylene Blue[J]. Chem Eur J, 2012,18(17):5319-5324. doi: 10.1002/chem.v18.17

  • 加载中
    1. [1]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    2. [2]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    3. [3]

      Ran Yu Chen Hu Ruili Guo Ruonan Liu Lixing Xia Cenyu Yang Jianglan Shui . 杂多酸H3PW12O40高效催化MgH2储氢. Acta Physico-Chimica Sinica, 2025, 41(1): 2308032-. doi: 10.3866/PKU.WHXB202308032

    4. [4]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    5. [5]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    6. [6]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    7. [7]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    8. [8]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    9. [9]

      Kaihui Huang Dejun Chen Xin Zhang Rongchen Shen Peng Zhang Difa Xu Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020

    10. [10]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    11. [11]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    12. [12]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    13. [13]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    14. [14]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    15. [15]

      Xiaomei Ning Liang Zhan Xiaosong Zhou Jin Luo Xunfu Zhou Cuifen Luo . Preparation and Electro-Oxidation Performance of PtBi Supported on Carbon Cloth: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 217-224. doi: 10.3866/PKU.DXHX202401085

    16. [16]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    17. [17]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    18. [18]

      Yueguang Chen Wenqiang Sun . “Carbon” Adventures. University Chemistry, 2024, 39(9): 248-253. doi: 10.3866/PKU.DXHX202308074

    19. [19]

      Yongwei ZHANGChuang ZHUWenbin WUYongyong MAHeng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386

    20. [20]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

Metrics
  • PDF Downloads(2)
  • Abstract views(670)
  • HTML views(112)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return