Citation: ZHANG He, ZHANG Mengshi, LIAO Shijun. Recent Progress in the Lithium-Rich Ternary Layered Cathode Materials[J]. Chinese Journal of Applied Chemistry, ;2018, 35(11): 1277-1288. doi: 10.11944/j.issn.1000-0518.2018.11.180006 shu

Recent Progress in the Lithium-Rich Ternary Layered Cathode Materials

  • Corresponding author: LIAO Shijun, chsjliao@scut.edu.cn
  • Received Date: 8 January 2018
    Revised Date: 1 March 2018
    Accepted Date: 27 March 2018

    Fund Project: Guangzhou Science Technology Innovation Committee 2016201604030012Natural Science Foundation of Guangdong Province 2015A030312007Supported by the National Natural Science Foundation of China(No, 21476088, No.51302091, No.U1301245), Natural Science Foundation of Guangdong Province(No.2014A010105041, No.2015A030312007), the Guangdong Provincial Department of Science and Technology(No.2015B010106012), Educational Commission of Guangdong Province(No.2013CXZDA003), Guangzhou Science Technology Innovation Committee(No.2016201604030012)Natural Science Foundation of Guangdong Province 2014A010105041the Guangdong Provincial Department of Science and Technology 2015B010106012the National Natural Science Foundation of China 21476088the National Natural Science Foundation of China U1301245the National Natural Science Foundation of China 51302091Educational Commission of Guangdong Province 2013CXZDA003

Figures(8)

  • Lithium-rich ternary layered cathode material (xLi2MnO3·(1-x)LiMO2 (0 < x < 1, M=Mn, Ni, Co)) has much higher discharge capacity than other cathode materials. Therefore, it is regarded as one of the best choice for the next generation of lithium-ion battery cathode materials. However, its commercial production and application have been limited by its poor cycle performance and low coulomb efficiency. Herein the latest research progress of lithium-rich ternary layered cathode materials is reviewed, mainly including the progresses in the aspects of material composition, preparation technology, structure tuning, doping and coating modification of the materials. Furthermore, developing trends of the materials is also prospected in this paper.
  • 加载中
    1. [1]

      Armand M, Tarascon J M. Building Better Batteries[J]. Nature, 2008,451(7179):652-657. doi: 10.1038/451652a

    2. [2]

      HUANG Kelong, WANG Zaoxiang, LIU Suqin. The Principle and Key Technology of Lithium Ion Battery[M]. Beijing:Chemical Industry Press, 2008, 340-360(in Chinese).

    3. [3]

      Zhao J, Wang Z, Guo H. Synthesis and Electrochemical Characterization of Zn-Doped Li-Rich Layered Li[Li0.2Mn0.54Ni0.13Co0.13]O2 Cathode Material[J]. Ceram Int, 2015,41(9):11396-11401. doi: 10.1016/j.ceramint.2015.05.102

    4. [4]

      Zhao E, Liu X, Hu Z. Facile Synthesis and Enhanced Electrochemical Performances of Li2TiO3-coated Lithium-Rich Layered Li1.13Ni0.30Mn0.57O2 Cathode Materials for Lithium-Ion Batteries[J]. J Power Sources, 2015,294:141-149. doi: 10.1016/j.jpowsour.2015.06.059

    5. [5]

      Zhang Y, Hou P, Zhou E. Pre-heat Treatment of Carbonate Precursor Firstly in Nitrogen and then Oxygen Atmospheres:A New Procedure to Improve Tap Density of High-performance Cathode Material Li1.167(Ni0.139Co0.139Mn0.556)O2, for Lithium Ion Batteries[J]. J Power Sources, 2015,292:58-65. doi: 10.1016/j.jpowsour.2015.05.036

    6. [6]

      Numata K, Sakaki C, Yamanaka S. Synthesis of Solid Solutions in a System of LiCoO2-Li2MnO3 for Cathode Materials of Secondary Lithium Batteries[J]. Chem Lett, 1997,26(8):725-726. doi: 10.1246/cl.1997.725

    7. [7]

      Lu Z, Beaulieu L Y, Donaberger R A. Synthesis, Structure, and Electrochemical Behavior of Li[NixLi1/3-2x/3Mn2/3-x/3]O2[J]. J Electrochem Soc, 2002,149(6):A778-A791. doi: 10.1149/1.1471541

    8. [8]

      Zhao Y, Xia M, Hu X. Effects of Sn Doping on the Structural and Electrochemical Properties of Li1.2Ni0.2Mn0.8O2 Li-rich Cathode Materials[J]. Electrochim Acta, 2015,174:1167-1174. doi: 10.1016/j.electacta.2015.05.068

    9. [9]

      Pan L, Xia Y, Qiu B. Structure and Electrochemistry of B Doped Li (Li0.2Ni0.13Co 0.13Mn0.54)1-xBxO2 as Cathode Materials for Lithium-Ion Batteries[J]. J Power Sources, 2016,327:273-280. doi: 10.1016/j.jpowsour.2016.07.064

    10. [10]

      Armand M. Intercalation Electrodes[M]. Materials for Advanced Batteries, 1980:145-161.

    11. [11]

      Whittingham M S. Lithium Batteries and Cathode materials[J]. Chem Rev, 2004,104(10):4271-4302. doi: 10.1021/cr020731c

    12. [12]

      Yu H, Zhou H. High-Energy Cathode Materials (Li2MnO3 LiMO2) for Lithium-Ion Batteries[J]. J Phys Chem Lett, 2013,4(8):1268-1280. doi: 10.1021/jz400032v

    13. [13]

      Thackeray M M, Johnson C S, Vaughey J T. Advances in Manganese-Oxide Composite' Electrodes for Lithium-Ion Batteries[J]. J Mater Chem, 2005,15(23):2257-2267. doi: 10.1039/b417616m

    14. [14]

      Lu Z, Chen Z, Dahn J. Lack of Cation Clustering in Li[NixLi1/3-2x/3Mn2/3-x/3]O2(0 < x ≤ 1/2) and Li[CrxLi(1-x)/3Mn(2-2x)/3]O2(0 < x < 1)[J]. Chem Mater, 2003,15(16):3214-3220. doi: 10.1021/cm030194s

    15. [15]

      Bréger J, Jiang M, Dupré N. High-Resolution X-Ray Diffraction, DIFFaX, NMR and First Principles Study of Disorder in the Li 2 MnO3-Li[Ni1/2Mn1/2]O2 Solid Solution[J]. J Solid State Chem, 2005,178(9):2575-2585. doi: 10.1016/j.jssc.2005.05.027

    16. [16]

      Shannon R D, Prewitt C T. Structural Crystallography and Crystal Chemistry[J]. Acta Cryst B, 1969,25(5):925-946. doi: 10.1107/S0567740869003220

    17. [17]

      Wang J, He X, Paillard E. Lithium-and Manganese-Rich Oxide Cathode Materials for High-Energy Lithium Ion Batteries[J]. Adv Energy Mater, 2016,6(21)1600906. doi: 10.1002/aenm.201600906

    18. [18]

      Armstrong A R, Holzapfel M, Novák P. Demonstrating Oxygen Loss and Associated Structural Reorganization in the Lithium Battery Cathode Li[Ni0.2Li0.2Mn0.6]O2[J]. J Am Chem Soc, 2006,128(26):8694-8698. doi: 10.1021/ja062027+

    19. [19]

      An J, Liu X, Li B. Recent Progress in Li-Rich Layered Oxides as Cathode Materials for Li-Ion Batteries[J]. RSC Adv, 2014,4(108):63268-63284. doi: 10.1039/C4RA12454E

    20. [20]

      Oishi M, Yamanaka K, Watanabe I. Direct Observation of Reversible Oxygen Anion Redox Reaction in Li-Rich Manganese Oxide, Li2MnO3, Studied by Soft X-Ray Absorption Spectroscopy[J]. J Mater Chem A, 2016,4(23):9293-9302. doi: 10.1039/C6TA00174B

    21. [21]

      Konishi H, Gunji A, Feng X. Effect of Transition Metal Composition on Electrochemical Performance of Nickel-Manganese-Based Lithium-Rich Layer-Structured Cathode Materials in Lithium-ion Batteries[J]. J Solid State Chem, 2017,249:80-86. doi: 10.1016/j.jssc.2017.02.022

    22. [22]

      XING Junlong, YANG Xulai. Cation Mixing in Cathode Materials for Li-Ion Batteries[J]. Chinese Battery Ind, 2013,18(5):257-261. doi: 10.3969/j.issn.1008-7923.2013.05.009

    23. [23]

      Li W, Yang Y, Zhang G. Ultrafast and Directional Diffusion of Dithium in Phosphorene for High-Performance Lithium-Ion Battery[J]. Nano Lett, 2015,15(3):1691-1697. doi: 10.1021/nl504336h

    24. [24]

      CHEN Peng, XIAO Guan, LIAO Shijun. Recent Progress in the Cobalt-Nickel-Manganese Ternary Cathode Materials with Various Proportions of Nickel to Cobalt and Manganese[J]. Chem Ind Eng Prog, 2016,35(1):166-174.  

    25. [25]

      Gao S, Zhang Y, Zhang H. The Effect of Lithium Content on the Structure, Morphology and Electrochemical Performance of Li-Rich Cathode Materials Li1+x(Ni1/6Co1/6Mn4/6)1-xO2[J]. New J Chem, 2017,41(18):10048-10053. doi: 10.1039/C7NJ01759F

    26. [26]

      Tsuda T, Kokubun H, Asaoka Y. Dependences of Discharge Capacity, Retention of Discharge Capacity, Average Discharge Voltage and Energy Density, and Rate Capability on the Composition of xLi2MnO3-yLiNi1/2Mn1/2O2-(1-xy) LiNi1/3Co1/3Mn1/3O2 Li-Rich Solid-Solution Cathode Materials for Li-Ion Battery[J]. ECS Trans, 2017,75(20):173-187. doi: 10.1149/07520.0173ecst

    27. [27]

      Konishi H, Hirano T, Takamatsu D. Effect of Composition of Transition Metals on Stability of Charged Li-rich Layer-structured Cathodes, Li1.2Ni0.2-xMn0.6-xCo2xO2(x=0, 0.033, and 0.067), at High Temperatures[J]. Electrochim Acta, 2015,186:591-597. doi: 10.1016/j.electacta.2015.10.155

    28. [28]

      Laisa C P, Kumar A K N, Chandrasekaran S S. A Comparative Study on Electrochemical Cycling Stability of Lithium Rich Layered Cathode Materials Li1.2Ni0.13M0.13Mn0.54O2 where M=Fe or Co[J]. J Power Sources, 2016,324:462-474. doi: 10.1016/j.jpowsour.2016.05.107

    29. [29]

      Gu R M, Yan S Y, Sun S. Electrochemical Behavior of Lithium-Rich Layered Oxide Li[Li0.23Ni0.15Mn0.62]O2 Cathode Material for Lithium-Ion Battery[J]. J Solid State Electrochem, 2015,19(6):1659-1669. doi: 10.1007/s10008-015-2796-9

    30. [30]

      Liu S, Wang Z, Huang Y. Fluorine Doping and Al2O3 Coating Co-Modified Li[Li0.2Ni0.133Co0.133Mn0.534]O2 as High Performance Cathode Material for Lithium-Ion Batteries[J]. J Alloys Compd, 2018,731:636-645. doi: 10.1016/j.jallcom.2017.09.341

    31. [31]

      Qiu B, Yin C, Xia Y. Synthesis of Three-Dimensional Nanoporous Li-Rich Layered Cathode Oxides for High Volumetric and Power Energy Density Lithium-Ion Batteries[J]. ACS Appl Mater Interfaces, 2017,9(4):3661-3666. doi: 10.1021/acsami.6b14169

    32. [32]

      Sun Y, Zhou Y, Zhang L. Preparation and Characterization of Lithium-Rich Ternary Cathode Materials Using Novel Chelating Agent and Solvent[J]. J Alloys Compd, 2017,723:1142-1149. doi: 10.1016/j.jallcom.2017.06.114

    33. [33]

      Yan W, Jiang J, Liu W. Synthesis and Evaluation of Microspherical Li1.2Mn0.54Co0.13Ni0.13O2 Through Carbon Dioxides-assisted Co-precipitation Method for Lithium-ion Battery[J]. Electrochim Acta, 2016,212:16-24. doi: 10.1016/j.electacta.2016.06.114

    34. [34]

      Dai D, Yan D, Li B. A Facile and Scalable Self-Assembly Strategy to Prepare Two-Dimensional Nanoplates:A Precursor for a Li-Rich Layered Cathode Material Li1.2Mn0.54Ni0.13Co0.13O2, with High Capacity and Rate Performance[J]. Electrochim Acta, 2017,235:632-639. doi: 10.1016/j.electacta.2017.03.148

    35. [35]

      Gao S, Yang T, Zhang H. Improved Electrochemical Performance and Thermal Stability of Li-rich Material Li1.2(Ni0.25Co0.25Mn0.5)0.8O2 Through a Novel Core-Shelled Structure Design[J]. J Alloys Compd, 2017,729:695-702. doi: 10.1016/j.jallcom.2017.09.225

    36. [36]

      Xiang Y, Sun Z, Li J. Improved Electrochemical Performance of Li1.2Ni0.2Mn0.6O2, Cathode Material for Lithium Ion Batteries Synthesized by the Polyvinyl Alcohol Assisted Sol-Gel Method[J]. Ceram Int, 2017,43(2):2320-2324. doi: 10.1016/j.ceramint.2016.11.016

    37. [37]

      Zheng F, Ou X, Pan Q. The Effect of Composite Organic Acid(Citric Acid & Tartaric Acid) on Microstructure and Electrochemical Properties of Li1.2Mn0.54Ni0.13Co0.13O2 Li-Rich Layered Oxides[J]. J Power Sources, 2017,346:31-39. doi: 10.1016/j.jpowsour.2017.02.036

    38. [38]

      Xiao B, Wang B, Liu J. Highly Stable Li1.2Mn 0.54Co0.13Ni0.13O2, Enabled by Novel Atomic Layer Deposited AlPO4, Coating[J]. Nano Energy, 2017,34:120-130. doi: 10.1016/j.nanoen.2017.02.015

    39. [39]

      Li J, Xu C, Zhao J. Li-Rich Nanoplates of Li1. 2Ni0.13Co0.13Mn0.54O2 Layered Oxide with Exposed {010} Planes as a High-Performance Cathode for Lithium-Ion Batteries[J]. J Alloys Compd, 2018,734:301-306. doi: 10.1016/j.jallcom.2017.10.285

    40. [40]

      Zhang L, Borong W, Ning L. Hierarchically Porous Micro-Rod Lithium-Rich Cathode Material Li1.2Ni0.13Mn0.54Co0.13O2 for High Performance Lithium-Ion Batteries[J]. Electrochim Acta, 2014,118:67-74. doi: 10.1016/j.electacta.2013.11.186

    41. [41]

      Fu F, Deng Y P, Shen C H. A Hierarchical Micro/Nanostructured 0.5 Li2MnO3 0.5LiMn0.4Ni 0.3Co 0.3O2 Material Synthesized by Solvothermal Route as High Rate Cathode of Lithium Ion Battery[J]. Electrochem Commun, 2014,44:54-58. doi: 10.1016/j.elecom.2014.04.013

    42. [42]

      Yang F, Zhang Q, Hu X. Preparation of Li-Rich Layered-Layered Type xLi2MnO3 (1-x)LiMnO2 Nanorods and Its Electrochemical Performance as Cathode Material for Li-Ion Battery[J]. J Power Sources, 2017,353:323-332. doi: 10.1016/j.jpowsour.2017.04.002

    43. [43]

      Hou M, Guo S, Liu J. Preparation of Lithium-Rich Layered Oxide Micro-Spheres Using a Slurry Spray-Drying Process[J]. J Power Sources, 2015,287:370-376. doi: 10.1016/j.jpowsour.2015.04.085

    44. [44]

      Wang T, Chen Z, Zhao R. A New High Energy Lithium Ion Batteries Consisting of 0.5Li2MnO3·0.5LiMn0.33Ni0.33Co0.33O2 and Soft Carbon Components[J]. Electrochim Acta, 2016,194:1-9. doi: 10.1016/j.electacta.2015.12.140

    45. [45]

      Wang T, Chen Z, Zhao R. Design and Tailoring of a Three-Dimensional Lithium Rich Layered Oxide-Graphene/Carbon Nanotubes Composite for Lithium-Ion Batteries[J]. Electrochim Acta, 2016,211:461-468. doi: 10.1016/j.electacta.2016.06.056

    46. [46]

      Zhao C, Liu R, Liu X. Sacrificed Template Synthesis of Li1.2Ni0.13Co0.13Mn0.54O2 Spheres for Lithium-Ion Battery Cathodes[J]. J Nanopart Res, 2013,15(11)2064. doi: 10.1007/s11051-013-2064-9

    47. [47]

      Zhang L, Jiang J, Zhang C. High-Rate Layered Lithium-Rich Cathode Nanomaterials for Lithium-Ion Batteries Synthesized with the Assist of Carbon Spheres Templates[J]. J Power Sources, 2016,331:247-257. doi: 10.1016/j.jpowsour.2016.09.048

    48. [48]

      Chong S, Chen Y, Yan W. Suppressing Capacity Fading and Voltage Decay of Li-Rich Layered Cathode Material by a Surface Nano-Protective Layer of CoF 2 for Lithium-Ion Batteries[J]. J Power Sources, 2016,332:230-239. doi: 10.1016/j.jpowsour.2016.09.028

    49. [49]

      He H, Zan L, Zhang Y. Effects of Amorphous V2O5 Coating on the Electrochemical Properties of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 as Cathode Material for Li-Ion Batteries[J]. J Alloys Compd, 2016,680:95-104. doi: 10.1016/j.jallcom.2016.04.115

    50. [50]

      He L, Xu J, Han T. SmPO4-Coated Li1.2Mn0.54Ni0.13Co0.13O2, as a Cathode Material with Enhanced Cycling Stability for Lithium Ion Batteries[J]. Ceram Int, 2017,43(6):5267-5273. doi: 10.1016/j.ceramint.2017.01.052

    51. [51]

      Wu F, Li Q, Bao L. Role of LaNiO3 in Suppressing Voltage Decay of Layered Lithium-Rich Cathode Materials[J]. Electrochim Acta, 2018,26(10):986-993.

    52. [52]

      Yu R, Wang G, Liu M. Mitigating Voltage and Capacity Fading of Lithium-Rich Layered Cathodes by Lanthanum Doping[J]. J Power Sources, 2016,335:65-75. doi: 10.1016/j.jpowsour.2016.10.042

    53. [53]

      Nayak P K, Grinblat J, Levi E. Understanding the Influence of Mg Doping for the Stabilization of Capacity and Higher Discharge Voltage of Li-and Mn-Rich Cathodes for Li-Ion Batteries[J]. Phys Chem Chem Phys, 2017,19(8):6142-6152. doi: 10.1039/C6CP07383B

    54. [54]

      Yan H, Li B, Yu Z. First-Principles Study:Tuning the Redox Behavior of Lithium-Rich Layered Oxides by Chlorine Doping[J]. J Phys Chem C, 2017,121(13):7155-7163. doi: 10.1021/acs.jpcc.7b01168

    55. [55]

      Guo B, Zhao J, Fan X. Aluminum and Fluorine Co-Doping for Promotion of Stability and Safety of Lithium-Rich Layered Cathode Material[J]. Electrochim Acta, 2017,236:171-179. doi: 10.1016/j.electacta.2017.03.133

    56. [56]

      Liu Y, Ning D, Zheng L. Improving the Electrochemical Performances of Li-Rich Li1.20Ni0.13Co0.13Mn0.54O2 Through a Cooperative Doping of Na+ and PO42- with Na3PO4[J]. J Power Sources, 2018,375:1-10. doi: 10.1016/j.jpowsour.2017.11.042

    57. [57]

      Li J, Jia T, Liu K. Facile Design and Synthesis of Li-Rich Nanoplates Cathodes with Habit-tuned Crystal for Lithium Ion Batteries[J]. J Power Sources, 2016,333:37-42. doi: 10.1016/j.jpowsour.2016.09.150

    58. [58]

      Wei G Z, Lu X, Ke F S. Crystal Habit-tuned Nanoplate Material of Li[Li1/3-2x/3NixMn2/3-x/3]O2 for High-Rate Performance Lithium-Ion Batteries[J]. Adv Mater, 2010,22(39):4364-4367. doi: 10.1002/adma.v22:39

    59. [59]

      Gallagher K G, Kang S H, Park S U. xLi2MnO3(1-x)LiMO2 Blended with LiFePO4 to Achieve High Energy Density and Pulse Power Capability[J]. J Power Sources, 2011,196(22):9702-9707. doi: 10.1016/j.jpowsour.2011.07.054

    60. [60]

      Thomas L H. The Calculation of Atomic Fields[C]//Mathematical Proceedings of the Cambridge Philosophical Society. Cambridge University Press, 1927, 23(5): 542-548. 

    61. [61]

      Perdew J P, Levy M. Physical Content of the Exact Kohn-Sham Orbital Energies:Band Gaps and Derivative Discontinuities[J]. Phys Rev Lett, 1983,51(20):1884-1887. doi: 10.1103/PhysRevLett.51.1884

    62. [62]

      Slater J C. Electrons, Atoms, Metals, and Alloys[M]//Electrons, Atoms, Metals and Alloys/.Dover Publications, 1963: 177-177.

    63. [63]

      Wang Z, Su Q, Deng H. Modelling and Simulation of Electron-Rich Effect on Li Diffusion in Group IVA Elements(Si, Ge and Sn) for Li Ion Batteries[J]. J Mater Chem A, 2014,2(34):13976-13982. doi: 10.1039/C4TA01614A

    64. [64]

      Gao Y, Wang X, Ma J. Selecting Substituent Elements for Li-Rich Mn-Based Cathode Materials by Density Functional Theory(DFT) Calculations[J]. Chem Mater, 2015,27(9):3456-3461. doi: 10.1021/acs.chemmater.5b00875

  • 加载中
    1. [1]

      Jianbao Mei Bei Li Shu Zhang Dongdong Xiao Pu Hu Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023

    2. [2]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    3. [3]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    4. [4]

      Aoyu Huang Jun Xu Yu Huang Gui Chu Mao Wang Lili Wang Yongqi Sun Zhen Jiang Xiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100037-. doi: 10.3866/PKU.WHXB202408007

    5. [5]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    6. [6]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    7. [7]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    8. [8]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    9. [9]

      Xueyu Lin Ruiqi Wang Wujie Dong Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005

    10. [10]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    11. [11]

      Yuting ZHANGZunyi LIUNing LIDongqiang ZHANGShiling ZHAOYu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204

    12. [12]

      Yang LIULijun WANGHongyu WANGZhidong CHENLin SUN . Surface and interface modification of porous silicon anodes in lithium-ion batteries by the introduction of heterogeneous atoms and hybrid encapsulation. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 773-785. doi: 10.11862/CJIC.20250015

    13. [13]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    14. [14]

      Jiaxuan Zuo Kun Zhang Jing Wang Xifei Li . 锂离子电池Ni-Co-Mn基正极材料前驱体的形核调控及机制. Acta Physico-Chimica Sinica, 2025, 41(1): 2404042-. doi: 10.3866/PKU.WHXB202404042

    15. [15]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    16. [16]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    17. [17]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    18. [18]

      Shitao Fu Jianming Zhang Cancan Cao Zhihui Wang Chaoran Qin Jian Zhang Hui Xiong . Study on the Stability of Purple Cabbage Pigment. University Chemistry, 2024, 39(4): 367-372. doi: 10.3866/PKU.DXHX202401059

    19. [19]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    20. [20]

      Pengyang FANShan FANQinjin DAIXiaoying ZHENGWei DONGMengxue WANGXiaoxiao HUANGYong ZHANG . Preparation and performance of rich 1T-MoS2 nanosheets for high-performance aqueous zinc ion battery cathode materials. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 675-682. doi: 10.11862/CJIC.20240339

Metrics
  • PDF Downloads(44)
  • Abstract views(1731)
  • HTML views(631)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return