Citation: WANG Tao, MA Lamaocao, MA Hengchang. Research Progress on Cell Imaging Based on the Aggregation-induced Emission Fluorescent Probes[J]. Chinese Journal of Applied Chemistry, ;2018, 35(10): 1155-1165. doi: 10.11944/j.issn.1000-0518.2018.10.170461 shu

Research Progress on Cell Imaging Based on the Aggregation-induced Emission Fluorescent Probes

  • Corresponding author: MA Hengchang, mahczju@hotmail.com
  • Received Date: 21 December 2017
    Revised Date: 8 April 2018
    Accepted Date: 25 April 2018

    Fund Project: National Natural Science Foundation of China 21764012Supported by the National Natural Science Foundation of China(No.21764012)

Figures(11)

  • Fluorescent probes as a major discovery in the field of chemical sensing at the end of the 20th century have the advantages of simple synthesis, high sensitivity, good selectivity, short response time and high visualization. The combination of the fluorescent group with the aggregation-induced emission(AIE) characteristics and the biocompatible polymer makes the fluorescent materials have the characteristics of low toxicity, good light stability and good biocompatibility. In molecular, ion detection and cell imaging technology it has been widely studied and applied. This review summarizes the fluorescence probes for cytoplasmic imaging, cell membrane imaging, mitochondrial imaging, lysosomal imaging, lipid droplet imaging, nuclear imaging, nuclear and mitochondrial dual-targeting imaging and the prospects for their application.
  • 加载中
    1. [1]

      Shimizu, Yoshinori. Light Emitting Device Having a Nitride Compound Semiconductor and a Phosphor Containing a Garnet Fluorescent Material: US. Patent, 5998925A[P]. 1999-12-07.

    2. [2]

      Komoto, Satoshi. Semiconductor Light Emitting Device Including a Fluorescent Material: US Patent, 6340824A[P]. 2002-01-22.

    3. [3]

      Xu X, Ray R, Gu Y. Electrophoretic Analysis and Purification of Fluorescent Single-walled Carbon Nanotube Fragments[J]. J Am Chem Soc, 2004,126(40):12736-12737. doi: 10.1021/ja040082h

    4. [4]

      Shalon D, Smith S J, Brown P O. A DNA Microarray System for Analyzing Complex DNA Samples Using Two-color Fluorescent Probe Hybridization[J]. Genome Res, 1996,6(7):639-645. doi: 10.1101/gr.6.7.639

    5. [5]

      Semisotnov G V, Rodionova N A, Razgulyaev O I. Study of the "Molten Globule" Intermediate State in Protein Folding by a Hydrophobic Fluorescent Probe[J]. Biopolymers, 1991,31(1):119-128. doi: 10.1002/(ISSN)1097-0282

    6. [6]

      Betzig E, Patterson G H, Sougrat R. Imaging Intracellular Fluorescent Proteins at Nanometer Resolution[J]. Science, 2006,313(5793):1642-1645. doi: 10.1126/science.1127344

    7. [7]

      Kinkhabwala A, Yu Z, Fan S. Large Single-molecule Fluorescence Enhancements Produced by a Bowtie Nanoantenna[J]. Nat Photonics, 2009,3(11):654-657. doi: 10.1038/nphoton.2009.187

    8. [8]

      Eggeling C, Ringemann C. Direct Observation of the Nanoscale Dynamics of Membrane Lipids in a Living Cell[J]. Nature, 2009,457(7233):1159-1162. doi: 10.1038/nature07596

    9. [9]

      Luo J, Xie Z, Lam J W Y. Aggregation-induced Emission of 1-Methyl-1, 2, 3, 4, 5-Pentaphenylsilole[J]. Chem Commun, 2001(18):1740-1741. doi: 10.1039/b105159h

    10. [10]

      Hong Y, Lam J W Y, Tang B Z. Aggregation-induced Emission[J]. Chem Soc Rev, 2011,40(11):5361-5388. doi: 10.1039/c1cs15113d

    11. [11]

      Hong Y, Lam J W Y, Tang B Z. Aggregation-induced Emission:Phenomenon, Mechanism and Applications[J]. Chem Commun, 2009(29):4332-4353. doi: 10.1039/b904665h

    12. [12]

      Lakowicz J R. Topics in Fluorescence Spectroscopy Nonlinear and Two-Photon-Induced Fluorescence[J]. Springer Berlin, 2002,6(1):103-121.

    13. [13]

      Li M, Hong Y, Wang Z. Fabrication of Chitosan Nanoparticles with Aggregation-Induced Emission Characteristics and Their Applications in Long-Term Live Cell Imaging[J]. Macromol Rapid Commun, 2013,34(9):767-771. doi: 10.1002/marc.v34.9

    14. [14]

      Yan L, Zhang Y, Xu B. Fluorescent Nanoparticles Based on AIE Fluorogens for Bioimaging[J]. Nanoscale, 2016,8(5):2471-2487. doi: 10.1039/C5NR05051K

    15. [15]

      Ding D, Mao D, Li K. Precise and Long-term Tracking of Adipose-derived Stem Cells and Their Regenerative Capacity via Superb Bright and Stable Organic Nanodots[J]. ACS Nano, 2014,8(12):12620-12631. doi: 10.1021/nn505554y

    16. [16]

      Zhang X, Zhang X, Wang S. Surfactant Modification of Aggregation-induced Emission Material as Biocompatible Nanoparticles:Facile Preparation and Cell Imaging[J]. Nanoscale, 2013,5(1):147-150. doi: 10.1039/C2NR32698A

    17. [17]

      Shao A, Xie Y, Zhu S. Far-Red and Near-IR AIE-Active Fluorescent Organic Nanoprobes with Enhanced Tumor-Targeting Efficacy:Shape-Specific Effects[J]. Angew Chem Int Ed, 2015,127(25):7383-7388. doi: 10.1002/ange.v127.25

    18. [18]

      Lehn J M. Supramolecular Chemistry[M]. SHEN Xinghai, Trans. Beijing: Peking University Press, 2002: 6-7(in Chinese).

    19. [19]

      Arai S, Lee S C, Chang Y T. A Molecular Fluorescent Probe for Targeted Visualization of Temperature at the Endoplasmic Reticulum[J]. Sci Rep-UK, 2014,46701.

    20. [20]

      Zhang W, Liu W, Li P. Rapid-Response Fluorescent Probe for Hydrogen Peroxide in Living Cells Based on Increased Polarity of C B Bonds[J]. Anal Chem, 2015,87(19):9825-9828. doi: 10.1021/acs.analchem.5b02194

    21. [21]

      Liu T, Liu X, Spring D R. Quantitatively Mapping Cellular Viscosity with Detailed Organelle Information via a Designed PET Fluorescent Probe[J]. Sci Rep-UK, 2014,45418.

    22. [22]

      Cheng J, Ma X, Zhang Y. Optical Chemosensors Based on Transmetalation of Salen-based Schiff Base Complexes[J]. Inorg Chem, 2014,53(6):3210-3219. doi: 10.1021/ic5000815

    23. [23]

      Zhou Y, Zhang J F, Yoon J. Fluorescence and Colorimetric Chemosensors for Fluoride-Ion Detection[J]. Chem Rev, 2014,114(10):5511-5571. doi: 10.1021/cr400352m

    24. [24]

      Zhou X, Lee S, Xu Z. Recent Progress on the Development of Chemosensors for Gases[J]. Chem Rev, 2015,115(15):7944-8000. doi: 10.1021/cr500567r

    25. [25]

      Goswami S, Das S, Aich K. A Chemodosimeter for the Ratiometric Detection of Hydrazine Based on Return of ESIPT and Its Application in Live-cell Imaging[J]. Org Lett, 2013,15(21):5412-5415. doi: 10.1021/ol4026759

    26. [26]

      Yin J, Kwon Y, Kim D. Cyanine-based Fluorescent Probe for Highly Selective Detection of Glutathione in Cell Cultures and Live Mouse Tissues[J]. J Am Chem Soc, 2014,136(14):5351-5358. doi: 10.1021/ja412628z

    27. [27]

      Liu B, Wang J, Zhang G. Flavone-based ESIPT Ratiometric Chemodosimeter for Detection of Cysteine in Living Cells[J]. ACS Appl Mater Interfaces, 2014,6(6):4402-4407. doi: 10.1021/am500102s

    28. [28]

      Aigner D, Borisov S M, Fern ndez F J O. New Fluorescent pH Sensors Based on Covalently Linkable PET Rhodamines[J]. Talanta, 2012,99:194-201. doi: 10.1016/j.talanta.2012.05.039

    29. [29]

      Park B W, Philippe B, Gustafsson T. Enhanced Crystallinity in Organic Inorganic Lead Halide Perovskites on Mesoporous TiO2 via Disorder-Order Phase Transition[J]. Chem Mater, 2014,2(15):4466-4471.

    30. [30]

      Liu Z, He W, Guo Z. Metal Coordination in Photoluminescent Sensing[J]. Chem Soc Rev, 2013,42(4):1568-1600. doi: 10.1039/c2cs35363f

    31. [31]

      Xu Z, Yoon J, Spring D R. A Selective and Ratiometric Cu2+ Fluorescent Probe Based on Naphthalimide Excimer Monomer Switching[J]. Chem Commun, 2010,46(15):2563-2565. doi: 10.1039/c000441c

    32. [32]

      Wu J, Liu W, Ge J. New Sensing Mechanisms for Design of Fluorescent Chemosensors Emerging in Recent Years[J]. Chem Soc Rev, 2011,40(7):3483-3495. doi: 10.1039/c0cs00224k

    33. [33]

      Kim T I, Kang H J, Han G. A Highly Selective Fluorescent ESIPT Probe for the Dual Specificity Phosphatase MKP-6[J]. Chem Commun, 2009(39):5895-5897.  

    34. [34]

      Mei J, Hong Y, Lam J W Y. Aggregation-Induced Emission:The Whole is More Brilliant Than the Parts[J]. Adv Mater, 2014,26(31):5429-5479. doi: 10.1002/adma.201401356

    35. [35]

      Chang Z F, Jing L M, Liu Y Y. Constructing Small Molecular AIE Luminophores Through a 2, 2-(2, 2-Diphenylethene-1, 1-diyl) Dithiophene Core and Peripheral Triphenylamine with Applications in Piezofluorochromism, Optical Waveguides, and Explosive Detection[J]. J Mater Chem C, 2016,4(36):8407-8415. doi: 10.1039/C6TC02395A

    36. [36]

      Miyanari Y, Atsuzawa K, Usuda N. The Lipid Droplet is an Important Organelle for Hepatitis C Virus Production[J]. Nat Cell Biol, 2007,9(9):1089-1097. doi: 10.1038/ncb1631

    37. [37]

      Berezney R. The Nuclear Matrix:A Heuristic Model for Investigating Genomic Organization and Function in the Cell Nucleus[J]. J Cell Biochem, 1991,47(2):109-123. doi: 10.1002/(ISSN)1097-4644

    38. [38]

      Vendrell M, Zhai D, Er J C. Combinatorial Strategies in Fluorescent Probe Development[J]. Chem Rev, 2012,112(8):4391-4420. doi: 10.1021/cr200355j

    39. [39]

      Xu W, Zeng Z, Jiang J H. Discerning the Chemistry in Individual Organelles with Small-Molecule Fluorescent Probes[J]. Angew Chem Int Ed, 2016,55(44):13658-13699. doi: 10.1002/anie.201510721

    40. [40]

      Li Y, Shao A, Wang Y. Tumor Bioimaging:Morphology-Tailoring of a Red AIEgen from Microsized Rods to Nanospheres for Tumor-Targeted Bioimaging[J]. Adv Mater, 2016,28(16):3224-3224. doi: 10.1002/adma.201670113

    41. [41]

      Li Y, Shao A, Wang Y. Morphology-Tailoring of a Red AIEgen from Microsized Rods to Nanospheres for Tumor-Targeted Bioimaging[J]. Adv Mater, 2016,28(16):3187-3193. doi: 10.1002/adma.201504782

    42. [42]

      Umezawa K, Yoshida M, Kamiya J M. Rational Design of Reversible Fluorescent Probes for Live-cell Imaging and Quantification of Fast Glutathione Dynamics[J]. Nat Chem, 2017,9(3):279-286. doi: 10.1038/nchem.2648

    43. [43]

      Ma H, Yang M, Zhang C. Aggregation-induced Emission(AIE)-active Fluorescent Probes with Multiple Binding Sites Toward ATP Sensing and Live Cell Imaging[J]. J Mater Chem B, 2017,5(43):8525-8531. doi: 10.1039/C7TB02399E

    44. [44]

      Pedram P, Mahani M, Torkzadeh-Mahani M. Cadmium Sulfide Quantum Dots Modified with the Human Transferrin Protein Siderophiline for Targeted Imaging of Breast Cancer Cells[J]. Microchim Acta, 2016,183(1):67-71. doi: 10.1007/s00604-015-1593-6

    45. [45]

      Sun L, Ding J, Xing W. Novel Strategy for Preparing Dual-modality Optical/PET Imaging Probes via Photo-click Chemistry[J]. Biol Chem, 2016,27(5):1200-1204.

    46. [46]

      Domaille D W, Que E L, Chang C J. Synthetic Fluorescent Sensors for Studying the Cell Biology of Metals[J]. Nat Chem Biol, 2008,4(3):168-175. doi: 10.1038/nchembio.69

    47. [47]

      Liang J, Li K, Liu B. Visual Sensing with Conjugated Polyelectrolytes[J]. Chem Soc, 2013,4(4):1377-1394.  

    48. [48]

      Ma H, Qi C, Cheng C. AIE-active Tetraphenylethylene Cross-linked N-Isopropylacrylamide Polymer:A Long-term Fluorescent Cellular Tracker[J]. ACS Appl Mater Interfaces, 2016,8(13):8341-8348. doi: 10.1021/acsami.5b11091

    49. [49]

      Wang B, Zhu C, Liu L. Synthesis of a New Conjugated Polymer for Cell Membrane Imaging by Using an Intracellular Targeting Strategy[J]. Polym Chem-UK, 2013,4(20):5212-5215. doi: 10.1039/c3py00097d

    50. [50]

      Zhang C, Jin S, Yang K. Cell Membrane Tracker Based on Restriction of Intramolecular Rotation[J]. ACS Appl Mater Interfaces, 2014,6(12):8971-8975. doi: 10.1021/am5025897

    51. [51]

      Jouaville L S, Pinton P, Bastianutto C. Regulation of Mitochondrial ATP Synthesis by Calcium:Evidence for a Long-term Metabolic Priming[J]. PNAS, 1999,96(24):13807-13812. doi: 10.1073/pnas.96.24.13807

    52. [52]

      Suen D F, Norris K L, Youle R J. Mitochondrial Dynamics and Apoptosis[J]. Gene Dev, 2008,22(12):1577-1590. doi: 10.1101/gad.1658508

    53. [53]

      Leung C W T, Hong Y, Chen S. A Photostable AIE Luminogen for Specific Mitochondrial Imaging and Tracking[J]. J Am Chem Soc, 2013,135(1):62-65. doi: 10.1021/ja310324q

    54. [54]

      Van Meel E, Klumperman J. Imaging and Imagination:Understanding the Endo-lysosomal System[J]. Histo Chem Cell Biol, 2008,129(3):253-266. doi: 10.1007/s00418-008-0384-0

    55. [55]

      Gao M, Hu Q, Feng G. A Fluorescent Light-up Probe with "AIE+ ESIPT" Characteristics for Specific Detection of Lyssomal Esterase[J]. J Mater Chem B, 2014,2(22):3438-3442. doi: 10.1039/C4TB00345D

    56. [56]

      Martin S, Parton R G. Opinion:Lipid Droplets:A Unified View of a Dynamic Organelle[J]. Nat Rev Mol Cell Biol, 2006,7(5):373-378. doi: 10.1038/nrm1912

    57. [57]

      Alberti K G M M, Zimmet P, Shaw J. Metabolic Syndrome-A New World-wide Definition. A Consensus Statement from the International Diabetes Federation[J]. Diabetic Med, 2006,23(5):469-480. doi: 10.1111/dme.2006.23.issue-5

    58. [58]

      Wang Z, Gui C, Zhao E. Specific Fluorescence Probes for Lipid Droplets Based on Simple AIEgens[J]. ACS Appl Mater Interfaces, 2016,8(16):10193-10200. doi: 10.1021/acsami.6b01282

    59. [59]

      Kobayashi H, Ogawa M, Alford R. New Strategies for Fluorescent Probe Design in Medical Diagnostic Imaging[J]. Chem Rev, 2009,110(5):2620-2640.  

    60. [60]

      Horobin R W, Stockert J C, Rashid-Doubell F. Fluorescent Cationic Probes for Nuclei of Living Cells:Why Are They Selective? A Quantitative Structure-Activity Relations Analysis[J]. Histochem Cell Biol, 2006,126(2):165-175. doi: 10.1007/s00418-006-0156-7

    61. [61]

      Collas P, Aleström P. Rapid Targeting of Plasmid DNA to Zebrafish Embryo Nuclei by the Nuclear Localization Signal of SV 40T Antigen[J]. Mol Mar Biol Biotechnol, 1997,6(1):48-58.

    62. [62]

      Wade W, Grabow , Luc J. RNA Self-Assembly and RNA Nanotechnology[J]. Acc Chem Res, 2014,47:1871-1880. doi: 10.1021/ar500076k

    63. [63]

      Chris Y Y, Kwok R T K, Tang B Z. A Photostable AIEgen for Nucleolus and Mitochondria Imaging with Organelle-specific Emission[J]. J Mater Chem B, 2016,4(15):2614-2619. doi: 10.1039/C6TB00319B

    64. [64]

      Ma H, Yang M, Zhang C. Aggregation-induced Emission(AIE)-active Fluorescent Probes with Multiple Binding Sites Toward ATP Sensing and Live Cell Imaging[J]. J Mater Chem B, 2017,5(43):8525-8531. doi: 10.1039/C7TB02399E

    65. [65]

      Haugland R P. Handbook of Fluorescent Probes and Research Products[M]. 9th Edn. Eugene OR: Molecular Probes, USA, 2002.

    66. [66]

      Giepmans B N, Adams S R, Ellisman M H. The Fluorescent Toolbox for Assessing Protein Location and Function[J]. Science, 2006,312(5771):217-224. doi: 10.1126/science.1124618

    67. [67]

      Ashkenazi A. Targeting Death and Decoy Receptors of the Tumour-necrosis Factor Superfamily[J]. Nat Rev Cancer, 2002,2(6):420-430. doi: 10.1038/nrc821

    68. [68]

      Ma H, Yang Z, Cao H. One Bioprobe:A Fluorescent and AIE-active Macromolecule; Two Targets:Nucleolus and Mitochondria with Long Term Tracking[J]. J Mater Chem B, 2017,5(4):655-660. doi: 10.1039/C6TB02844F

  • 加载中
    1. [1]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    2. [2]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    3. [3]

      Yanyang Li Zongpei Zhang Kai Li Shuangquan Zang . Ideological and Political Design for the Comprehensive Experiment of the Synthesis and Aggregation-Induced Emission (AIE) Performance Study of Salicylaldehyde Schiff-Base. University Chemistry, 2024, 39(2): 105-109. doi: 10.3866/PKU.DXHX202307020

    4. [4]

      Rui Gao Ying Zhou Yifan Hu Siyuan Chen Shouhong Xu Qianfu Luo Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050

    5. [5]

      Hongxia Yan Weixu Feng Junyan Yao Wei Tian Rui Wang . Illuminating the Teaching of Science and Engineering Graduate Courses with “Curriculum Ideology and Politics”. University Chemistry, 2024, 39(6): 122-127. doi: 10.3866/PKU.DXHX202310059

    6. [6]

      Jian Li Yu Zhang Rongrong Yan Kaiyuan Sun Xiaoqing Liu Zishang Liang Yinan Jiao Hui Bu Xin Chen Jinjin Zhao Jianlin Shi . 高效靶向示踪钙钛矿纳米系统光电增效抗肿瘤. Acta Physico-Chimica Sinica, 2025, 41(5): 100042-. doi: 10.1016/j.actphy.2024.100042

    7. [7]

      Yu SUXinlian FANYao YINLin WANG . From synthesis to application: Development and prospects of InP quantum dots. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2105-2123. doi: 10.11862/CJIC.20240126

    8. [8]

      Meiqing Yang Lu Wang Haozi Lu Yaocheng Yang Song Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-. doi: 10.3866/PKU.WHXB202310046

    9. [9]

      Xinyi Hong Tailing Xue Zhou Xu Enrong Xie Mingkai Wu Qingqing Wang Lina Wu . Non-Site-Specific Fluorescent Labeling of Proteins as a Chemical Biology Experiment. University Chemistry, 2024, 39(4): 351-360. doi: 10.3866/PKU.DXHX202310010

    10. [10]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    11. [11]

      Yuan ZHUXiaoda ZHANGShasha WANGPeng WEITao YI . Conditionally restricted fluorescent probe for Fe3+ and Cu2+ based on the naphthalimide structure. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 183-192. doi: 10.11862/CJIC.20240232

    12. [12]

      Shuwen SUNGaofeng WANG . Design and synthesis of a Zn(Ⅱ)-based coordination polymer as a fluorescent probe for trace monitoring 2, 4, 6-trinitrophenol. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 753-760. doi: 10.11862/CJIC.20240399

    13. [13]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    14. [14]

      Jinghan ZHANGGuanying CHEN . Progress in the application of rare-earth-doped upconversion nanoprobes in biological detection. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2335-2355. doi: 10.11862/CJIC.20240249

    15. [15]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    16. [16]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    17. [17]

      Qiaoqiao BAIAnqi ZHOUXiaowei LITang LIUSong LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128

    18. [18]

      Zishuo Yi Peng Liu Yan Xu . Fluorescent “Chameleon”: A Popular Science Experiment Based on Dynamic Luminescence. University Chemistry, 2024, 39(9): 304-310. doi: 10.12461/PKU.DXHX202311079

    19. [19]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    20. [20]

      Lin Song Dourong Wang Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107

Metrics
  • PDF Downloads(18)
  • Abstract views(2359)
  • HTML views(971)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return