Research Progress on Cell Imaging Based on the Aggregation-induced Emission Fluorescent Probes
- Corresponding author: MA Hengchang, mahczju@hotmail.com
Citation:
WANG Tao, MA Lamaocao, MA Hengchang. Research Progress on Cell Imaging Based on the Aggregation-induced Emission Fluorescent Probes[J]. Chinese Journal of Applied Chemistry,
;2018, 35(10): 1155-1165.
doi:
10.11944/j.issn.1000-0518.2018.10.170461
Shimizu, Yoshinori. Light Emitting Device Having a Nitride Compound Semiconductor and a Phosphor Containing a Garnet Fluorescent Material: US. Patent, 5998925A[P]. 1999-12-07.
Komoto, Satoshi. Semiconductor Light Emitting Device Including a Fluorescent Material: US Patent, 6340824A[P]. 2002-01-22.
Xu X, Ray R, Gu Y. Electrophoretic Analysis and Purification of Fluorescent Single-walled Carbon Nanotube Fragments[J]. J Am Chem Soc, 2004,126(40):12736-12737. doi: 10.1021/ja040082h
Shalon D, Smith S J, Brown P O. A DNA Microarray System for Analyzing Complex DNA Samples Using Two-color Fluorescent Probe Hybridization[J]. Genome Res, 1996,6(7):639-645. doi: 10.1101/gr.6.7.639
Semisotnov G V, Rodionova N A, Razgulyaev O I. Study of the "Molten Globule" Intermediate State in Protein Folding by a Hydrophobic Fluorescent Probe[J]. Biopolymers, 1991,31(1):119-128. doi: 10.1002/(ISSN)1097-0282
Betzig E, Patterson G H, Sougrat R. Imaging Intracellular Fluorescent Proteins at Nanometer Resolution[J]. Science, 2006,313(5793):1642-1645. doi: 10.1126/science.1127344
Kinkhabwala A, Yu Z, Fan S. Large Single-molecule Fluorescence Enhancements Produced by a Bowtie Nanoantenna[J]. Nat Photonics, 2009,3(11):654-657. doi: 10.1038/nphoton.2009.187
Eggeling C, Ringemann C. Direct Observation of the Nanoscale Dynamics of Membrane Lipids in a Living Cell[J]. Nature, 2009,457(7233):1159-1162. doi: 10.1038/nature07596
Luo J, Xie Z, Lam J W Y. Aggregation-induced Emission of 1-Methyl-1, 2, 3, 4, 5-Pentaphenylsilole[J]. Chem Commun, 2001(18):1740-1741. doi: 10.1039/b105159h
Hong Y, Lam J W Y, Tang B Z. Aggregation-induced Emission[J]. Chem Soc Rev, 2011,40(11):5361-5388. doi: 10.1039/c1cs15113d
Hong Y, Lam J W Y, Tang B Z. Aggregation-induced Emission:Phenomenon, Mechanism and Applications[J]. Chem Commun, 2009(29):4332-4353. doi: 10.1039/b904665h
Lakowicz J R. Topics in Fluorescence Spectroscopy Nonlinear and Two-Photon-Induced Fluorescence[J]. Springer Berlin, 2002,6(1):103-121.
Li M, Hong Y, Wang Z. Fabrication of Chitosan Nanoparticles with Aggregation-Induced Emission Characteristics and Their Applications in Long-Term Live Cell Imaging[J]. Macromol Rapid Commun, 2013,34(9):767-771. doi: 10.1002/marc.v34.9
Yan L, Zhang Y, Xu B. Fluorescent Nanoparticles Based on AIE Fluorogens for Bioimaging[J]. Nanoscale, 2016,8(5):2471-2487. doi: 10.1039/C5NR05051K
Ding D, Mao D, Li K. Precise and Long-term Tracking of Adipose-derived Stem Cells and Their Regenerative Capacity via Superb Bright and Stable Organic Nanodots[J]. ACS Nano, 2014,8(12):12620-12631. doi: 10.1021/nn505554y
Zhang X, Zhang X, Wang S. Surfactant Modification of Aggregation-induced Emission Material as Biocompatible Nanoparticles:Facile Preparation and Cell Imaging[J]. Nanoscale, 2013,5(1):147-150. doi: 10.1039/C2NR32698A
Shao A, Xie Y, Zhu S. Far-Red and Near-IR AIE-Active Fluorescent Organic Nanoprobes with Enhanced Tumor-Targeting Efficacy:Shape-Specific Effects[J]. Angew Chem Int Ed, 2015,127(25):7383-7388. doi: 10.1002/ange.v127.25
Lehn J M. Supramolecular Chemistry[M]. SHEN Xinghai, Trans. Beijing: Peking University Press, 2002: 6-7(in Chinese).
Arai S, Lee S C, Chang Y T. A Molecular Fluorescent Probe for Targeted Visualization of Temperature at the Endoplasmic Reticulum[J]. Sci Rep-UK, 2014,46701.
Zhang W, Liu W, Li P. Rapid-Response Fluorescent Probe for Hydrogen Peroxide in Living Cells Based on Increased Polarity of C B Bonds[J]. Anal Chem, 2015,87(19):9825-9828. doi: 10.1021/acs.analchem.5b02194
Liu T, Liu X, Spring D R. Quantitatively Mapping Cellular Viscosity with Detailed Organelle Information via a Designed PET Fluorescent Probe[J]. Sci Rep-UK, 2014,45418.
Cheng J, Ma X, Zhang Y. Optical Chemosensors Based on Transmetalation of Salen-based Schiff Base Complexes[J]. Inorg Chem, 2014,53(6):3210-3219. doi: 10.1021/ic5000815
Zhou Y, Zhang J F, Yoon J. Fluorescence and Colorimetric Chemosensors for Fluoride-Ion Detection[J]. Chem Rev, 2014,114(10):5511-5571. doi: 10.1021/cr400352m
Zhou X, Lee S, Xu Z. Recent Progress on the Development of Chemosensors for Gases[J]. Chem Rev, 2015,115(15):7944-8000. doi: 10.1021/cr500567r
Goswami S, Das S, Aich K. A Chemodosimeter for the Ratiometric Detection of Hydrazine Based on Return of ESIPT and Its Application in Live-cell Imaging[J]. Org Lett, 2013,15(21):5412-5415. doi: 10.1021/ol4026759
Yin J, Kwon Y, Kim D. Cyanine-based Fluorescent Probe for Highly Selective Detection of Glutathione in Cell Cultures and Live Mouse Tissues[J]. J Am Chem Soc, 2014,136(14):5351-5358. doi: 10.1021/ja412628z
Liu B, Wang J, Zhang G. Flavone-based ESIPT Ratiometric Chemodosimeter for Detection of Cysteine in Living Cells[J]. ACS Appl Mater Interfaces, 2014,6(6):4402-4407. doi: 10.1021/am500102s
Aigner D, Borisov S M, Fern ndez F J O. New Fluorescent pH Sensors Based on Covalently Linkable PET Rhodamines[J]. Talanta, 2012,99:194-201. doi: 10.1016/j.talanta.2012.05.039
Park B W, Philippe B, Gustafsson T. Enhanced Crystallinity in Organic Inorganic Lead Halide Perovskites on Mesoporous TiO2 via Disorder-Order Phase Transition[J]. Chem Mater, 2014,2(15):4466-4471.
Liu Z, He W, Guo Z. Metal Coordination in Photoluminescent Sensing[J]. Chem Soc Rev, 2013,42(4):1568-1600. doi: 10.1039/c2cs35363f
Xu Z, Yoon J, Spring D R. A Selective and Ratiometric Cu2+ Fluorescent Probe Based on Naphthalimide Excimer Monomer Switching[J]. Chem Commun, 2010,46(15):2563-2565. doi: 10.1039/c000441c
Wu J, Liu W, Ge J. New Sensing Mechanisms for Design of Fluorescent Chemosensors Emerging in Recent Years[J]. Chem Soc Rev, 2011,40(7):3483-3495. doi: 10.1039/c0cs00224k
Kim T I, Kang H J, Han G. A Highly Selective Fluorescent ESIPT Probe for the Dual Specificity Phosphatase MKP-6[J]. Chem Commun, 2009(39):5895-5897.
Mei J, Hong Y, Lam J W Y. Aggregation-Induced Emission:The Whole is More Brilliant Than the Parts[J]. Adv Mater, 2014,26(31):5429-5479. doi: 10.1002/adma.201401356
Chang Z F, Jing L M, Liu Y Y. Constructing Small Molecular AIE Luminophores Through a 2, 2-(2, 2-Diphenylethene-1, 1-diyl) Dithiophene Core and Peripheral Triphenylamine with Applications in Piezofluorochromism, Optical Waveguides, and Explosive Detection[J]. J Mater Chem C, 2016,4(36):8407-8415. doi: 10.1039/C6TC02395A
Miyanari Y, Atsuzawa K, Usuda N. The Lipid Droplet is an Important Organelle for Hepatitis C Virus Production[J]. Nat Cell Biol, 2007,9(9):1089-1097. doi: 10.1038/ncb1631
Berezney R. The Nuclear Matrix:A Heuristic Model for Investigating Genomic Organization and Function in the Cell Nucleus[J]. J Cell Biochem, 1991,47(2):109-123. doi: 10.1002/(ISSN)1097-4644
Vendrell M, Zhai D, Er J C. Combinatorial Strategies in Fluorescent Probe Development[J]. Chem Rev, 2012,112(8):4391-4420. doi: 10.1021/cr200355j
Xu W, Zeng Z, Jiang J H. Discerning the Chemistry in Individual Organelles with Small-Molecule Fluorescent Probes[J]. Angew Chem Int Ed, 2016,55(44):13658-13699. doi: 10.1002/anie.201510721
Li Y, Shao A, Wang Y. Tumor Bioimaging:Morphology-Tailoring of a Red AIEgen from Microsized Rods to Nanospheres for Tumor-Targeted Bioimaging[J]. Adv Mater, 2016,28(16):3224-3224. doi: 10.1002/adma.201670113
Li Y, Shao A, Wang Y. Morphology-Tailoring of a Red AIEgen from Microsized Rods to Nanospheres for Tumor-Targeted Bioimaging[J]. Adv Mater, 2016,28(16):3187-3193. doi: 10.1002/adma.201504782
Umezawa K, Yoshida M, Kamiya J M. Rational Design of Reversible Fluorescent Probes for Live-cell Imaging and Quantification of Fast Glutathione Dynamics[J]. Nat Chem, 2017,9(3):279-286. doi: 10.1038/nchem.2648
Ma H, Yang M, Zhang C. Aggregation-induced Emission(AIE)-active Fluorescent Probes with Multiple Binding Sites Toward ATP Sensing and Live Cell Imaging[J]. J Mater Chem B, 2017,5(43):8525-8531. doi: 10.1039/C7TB02399E
Pedram P, Mahani M, Torkzadeh-Mahani M. Cadmium Sulfide Quantum Dots Modified with the Human Transferrin Protein Siderophiline for Targeted Imaging of Breast Cancer Cells[J]. Microchim Acta, 2016,183(1):67-71. doi: 10.1007/s00604-015-1593-6
Sun L, Ding J, Xing W. Novel Strategy for Preparing Dual-modality Optical/PET Imaging Probes via Photo-click Chemistry[J]. Biol Chem, 2016,27(5):1200-1204.
Domaille D W, Que E L, Chang C J. Synthetic Fluorescent Sensors for Studying the Cell Biology of Metals[J]. Nat Chem Biol, 2008,4(3):168-175. doi: 10.1038/nchembio.69
Liang J, Li K, Liu B. Visual Sensing with Conjugated Polyelectrolytes[J]. Chem Soc, 2013,4(4):1377-1394.
Ma H, Qi C, Cheng C. AIE-active Tetraphenylethylene Cross-linked N-Isopropylacrylamide Polymer:A Long-term Fluorescent Cellular Tracker[J]. ACS Appl Mater Interfaces, 2016,8(13):8341-8348. doi: 10.1021/acsami.5b11091
Wang B, Zhu C, Liu L. Synthesis of a New Conjugated Polymer for Cell Membrane Imaging by Using an Intracellular Targeting Strategy[J]. Polym Chem-UK, 2013,4(20):5212-5215. doi: 10.1039/c3py00097d
Zhang C, Jin S, Yang K. Cell Membrane Tracker Based on Restriction of Intramolecular Rotation[J]. ACS Appl Mater Interfaces, 2014,6(12):8971-8975. doi: 10.1021/am5025897
Jouaville L S, Pinton P, Bastianutto C. Regulation of Mitochondrial ATP Synthesis by Calcium:Evidence for a Long-term Metabolic Priming[J]. PNAS, 1999,96(24):13807-13812. doi: 10.1073/pnas.96.24.13807
Suen D F, Norris K L, Youle R J. Mitochondrial Dynamics and Apoptosis[J]. Gene Dev, 2008,22(12):1577-1590. doi: 10.1101/gad.1658508
Leung C W T, Hong Y, Chen S. A Photostable AIE Luminogen for Specific Mitochondrial Imaging and Tracking[J]. J Am Chem Soc, 2013,135(1):62-65. doi: 10.1021/ja310324q
Van Meel E, Klumperman J. Imaging and Imagination:Understanding the Endo-lysosomal System[J]. Histo Chem Cell Biol, 2008,129(3):253-266. doi: 10.1007/s00418-008-0384-0
Gao M, Hu Q, Feng G. A Fluorescent Light-up Probe with "AIE+ ESIPT" Characteristics for Specific Detection of Lyssomal Esterase[J]. J Mater Chem B, 2014,2(22):3438-3442. doi: 10.1039/C4TB00345D
Martin S, Parton R G. Opinion:Lipid Droplets:A Unified View of a Dynamic Organelle[J]. Nat Rev Mol Cell Biol, 2006,7(5):373-378. doi: 10.1038/nrm1912
Alberti K G M M, Zimmet P, Shaw J. Metabolic Syndrome-A New World-wide Definition. A Consensus Statement from the International Diabetes Federation[J]. Diabetic Med, 2006,23(5):469-480. doi: 10.1111/dme.2006.23.issue-5
Wang Z, Gui C, Zhao E. Specific Fluorescence Probes for Lipid Droplets Based on Simple AIEgens[J]. ACS Appl Mater Interfaces, 2016,8(16):10193-10200. doi: 10.1021/acsami.6b01282
Kobayashi H, Ogawa M, Alford R. New Strategies for Fluorescent Probe Design in Medical Diagnostic Imaging[J]. Chem Rev, 2009,110(5):2620-2640.
Horobin R W, Stockert J C, Rashid-Doubell F. Fluorescent Cationic Probes for Nuclei of Living Cells:Why Are They Selective? A Quantitative Structure-Activity Relations Analysis[J]. Histochem Cell Biol, 2006,126(2):165-175. doi: 10.1007/s00418-006-0156-7
Collas P, Aleström P. Rapid Targeting of Plasmid DNA to Zebrafish Embryo Nuclei by the Nuclear Localization Signal of SV 40T Antigen[J]. Mol Mar Biol Biotechnol, 1997,6(1):48-58.
Wade W, Grabow , Luc J. RNA Self-Assembly and RNA Nanotechnology[J]. Acc Chem Res, 2014,47:1871-1880. doi: 10.1021/ar500076k
Chris Y Y, Kwok R T K, Tang B Z. A Photostable AIEgen for Nucleolus and Mitochondria Imaging with Organelle-specific Emission[J]. J Mater Chem B, 2016,4(15):2614-2619. doi: 10.1039/C6TB00319B
Ma H, Yang M, Zhang C. Aggregation-induced Emission(AIE)-active Fluorescent Probes with Multiple Binding Sites Toward ATP Sensing and Live Cell Imaging[J]. J Mater Chem B, 2017,5(43):8525-8531. doi: 10.1039/C7TB02399E
Haugland R P. Handbook of Fluorescent Probes and Research Products[M]. 9th Edn. Eugene OR: Molecular Probes, USA, 2002.
Giepmans B N, Adams S R, Ellisman M H. The Fluorescent Toolbox for Assessing Protein Location and Function[J]. Science, 2006,312(5771):217-224. doi: 10.1126/science.1124618
Ashkenazi A. Targeting Death and Decoy Receptors of the Tumour-necrosis Factor Superfamily[J]. Nat Rev Cancer, 2002,2(6):420-430. doi: 10.1038/nrc821
Ma H, Yang Z, Cao H. One Bioprobe:A Fluorescent and AIE-active Macromolecule; Two Targets:Nucleolus and Mitochondria with Long Term Tracking[J]. J Mater Chem B, 2017,5(4):655-660. doi: 10.1039/C6TB02844F
Jinlong YAN , Weina WU , Yuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154
Jun LUO , Baoshu LIU , Yunchang ZHANG , Bingkai WANG , Beibei GUO , Lan SHE , Tianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240
Yanyang Li , Zongpei Zhang , Kai Li , Shuangquan Zang . Ideological and Political Design for the Comprehensive Experiment of the Synthesis and Aggregation-Induced Emission (AIE) Performance Study of Salicylaldehyde Schiff-Base. University Chemistry, 2024, 39(2): 105-109. doi: 10.3866/PKU.DXHX202307020
Rui Gao , Ying Zhou , Yifan Hu , Siyuan Chen , Shouhong Xu , Qianfu Luo , Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050
Hongxia Yan , Weixu Feng , Junyan Yao , Wei Tian , Rui Wang . Illuminating the Teaching of Science and Engineering Graduate Courses with “Curriculum Ideology and Politics”. University Chemistry, 2024, 39(6): 122-127. doi: 10.3866/PKU.DXHX202310059
Jian Li , Yu Zhang , Rongrong Yan , Kaiyuan Sun , Xiaoqing Liu , Zishang Liang , Yinan Jiao , Hui Bu , Xin Chen , Jinjin Zhao , Jianlin Shi . 高效靶向示踪钙钛矿纳米系统光电增效抗肿瘤. Acta Physico-Chimica Sinica, 2025, 41(5): 100042-. doi: 10.1016/j.actphy.2024.100042
Yu SU , Xinlian FAN , Yao YIN , Lin WANG . From synthesis to application: Development and prospects of InP quantum dots. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2105-2123. doi: 10.11862/CJIC.20240126
Meiqing Yang , Lu Wang , Haozi Lu , Yaocheng Yang , Song Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-. doi: 10.3866/PKU.WHXB202310046
Xinyi Hong , Tailing Xue , Zhou Xu , Enrong Xie , Mingkai Wu , Qingqing Wang , Lina Wu . Non-Site-Specific Fluorescent Labeling of Proteins as a Chemical Biology Experiment. University Chemistry, 2024, 39(4): 351-360. doi: 10.3866/PKU.DXHX202310010
Meirong HAN , Xiaoyang WEI , Sisi FENG , Yuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150
Yuan ZHU , Xiaoda ZHANG , Shasha WANG , Peng WEI , Tao YI . Conditionally restricted fluorescent probe for Fe3+ and Cu2+ based on the naphthalimide structure. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 183-192. doi: 10.11862/CJIC.20240232
Shuwen SUN , Gaofeng WANG . Design and synthesis of a Zn(Ⅱ)-based coordination polymer as a fluorescent probe for trace monitoring 2, 4, 6-trinitrophenol. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 753-760. doi: 10.11862/CJIC.20240399
Siyi ZHONG , Xiaowen LIN , Jiaxin LIU , Ruyi WANG , Tao LIANG , Zhengfeng DENG , Ao ZHONG , Cuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093
Jinghan ZHANG , Guanying CHEN . Progress in the application of rare-earth-doped upconversion nanoprobes in biological detection. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2335-2355. doi: 10.11862/CJIC.20240249
Zhongxin YU , Wei SONG , Yang LIU , Yuxue DING , Fanhao MENG , Shuju WANG , Lixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304
Jiakun BAI , Ting XU , Lu ZHANG , Jiang PENG , Yuqiang LI , Junhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002
Qiaoqiao BAI , Anqi ZHOU , Xiaowei LI , Tang LIU , Song LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128
Zishuo Yi , Peng Liu , Yan Xu . Fluorescent “Chameleon”: A Popular Science Experiment Based on Dynamic Luminescence. University Chemistry, 2024, 39(9): 304-310. doi: 10.12461/PKU.DXHX202311079
Xin MA , Ya SUN , Na SUN , Qian KANG , Jiajia ZHANG , Ruitao ZHU , Xiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357
Lin Song , Dourong Wang , Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107
(A)Molecular structures of TR4; (B)Living MCF-7 cells were incubated with 50 μmol/L TR4 for 30 min and 10 μmol/L DiI in PBS solution for 10 min at 37 ℃. CLSM images of TR4(left, green, λex=405 nm), DiI(middle, red, λex=543 nm) and merged image of panels TR4 and DiI(right); (C)CLSM images of living MCF-7 cells treated with TR4(green) or DiI(red) with increasing scanning time(0~9 min). Scale bars are 10 μm
(A)Chemical structure of TPE-TPP; (B)Fluorescent images of CCCP(10 μmol/L) treated HeLa cells stained with MT(50 nmol/L) for 15 min and TPE-TPP(5 μmol/L) for 30 min. Excitation wavelength: 540~580 nm(for MT) and 330~385 nm(for TPE-TPP); (C)Fluorescent images of CCCP(20 μmol/L) treated living HeLa cells stained with TPE-TPP(5 μmol/L) with increasing scan time(shown in the upper left corner of the panel). Excitation wavelength:405 nm; emission filter:449~520 nm; irradiation time: 15.49 s/scan
(A)Design of probe AIE-Lyso-1 for specific detection of lysosomal esterase; (B)Confocal images of MCF-7 cells stained with 1.0 mmol/L AIE-Lyso-1 and 50 nmol/L LysoTracker Red. Confocal images of an MCF-7 cell stained with 1.0 mmol/L AIE-Lyso-1 and stimulated using 3 mmol/L chloroquine. Different pseudo-colors are used to illustrate the fuorescence images at different stimulation times of 0, 1, 3, and 5 min. (G~I)Merging images at two different times of 0 and 1 min(G), 1 and 3 min(H), 3 and 5 min(I), and the bright-field image(J). Scale bar:5 μm
(A)Chemical structure of ASCP; (B)Fluorescent and bright-field images of HeLa cells stained with ASCP(5 μmol/L) for 30 min with focus at nucleolus, respectively. λex=460~490 nm; scale bar=30 μm