Citation: LI Fei, MAO Shengxue, SUN Yue, LÜ Chengwei, AN Yue. Dipotassium Hydrogenphosphate Assisted Multi-component One-Pot Synthesis of 1, 4-Hihydropyrano[2, 3-c]pyrazole Derivatives[J]. Chinese Journal of Applied Chemistry, ;2018, 35(10): 1201-1207. doi: 10.11944/j.issn.1000-0518.2018.10.170393 shu

Dipotassium Hydrogenphosphate Assisted Multi-component One-Pot Synthesis of 1, 4-Hihydropyrano[2, 3-c]pyrazole Derivatives

  • Corresponding author: LÜ Chengwei, chengweilv@126.com
  • Received Date: 2 November 2017
    Revised Date: 8 December 2017
    Accepted Date: 15 December 2017

    Fund Project: Liaoning Province, the Doctoral Scientific Research Foundation 20141100Supported by the National Natural Science Foundation of China(No.21403100), Liaoning Province, the Doctoral Scientific Research Foundation(No.20141100), the Key Laboratory of Education Department of Liaoning Province(No.L201683656)the National Natural Science Foundation of China 21403100the Key Laboratory of Education Department of Liaoning Province L201683656

Figures(1)

  • Catalytic one-pot four-component reaction is an ideal strategy for efficient and facile synthesis of pyrano[2, 3-c]pyrazoles. The efficacy of dipotassium hydrogenphosphate(K2HPO4·3H2O) as a cheap and readily accessible catalyst for the synthesis of 1, 4-dihydropyrano[2, 3-c]pyrazole-5-carbonitrile derivatives via one-pot four-component reaction of ethyl acetoacetate, hydrazine hydrate, aryl aldehydes, and malononitrile was described in this paper. These multi-component condensations proceeded smoothly in aqueous polyethylene glycol(PEG-200) and the corresponding products were obtained in 88%~98% yields. This improved protocol eliminates the problems associated with expensive complex catalyst and tedious purification procedures.
  • 加载中
    1. [1]

      Kanagaraj K, Pitchumani K. Solvent-Free Multicomponent Synthesis of Pyranopyrazoles:Per-6-amino-b-cyclodextrin as a Remarkable Catalyst and Host[J]. Tetrahedron Lett, 2010,51(25):3312-3316. doi: 10.1016/j.tetlet.2010.04.087

    2. [2]

      Saha M, Das B, Pal A K. Synthesis of Pyran Derivatives under Ultrasound Irradiation Using Ni Nanoparticles as Reusable Catalysts in Aqueous Medium[J]. C R Chim, 2013,16(12):1079-1085. doi: 10.1016/j.crci.2013.05.012

    3. [3]

      Bian L, Xu J, Xie L. Three-component Synthesis of 2-Amino-3-cyano-5-oxo-4-perfluoroalkyl-5, 6, 7, 8-tetrahydro-4H-chromene Derivatives[J]. Tetrahedron, 2013,69(30):6121-6128. doi: 10.1016/j.tet.2013.05.053

    4. [4]

      Paul S, Pradhan K, Ghosh S. Uncapped SnO2 Quantum Dot Catalyzed Cascade Assembling of Four Components:A Rapid and Green Approach to the Pyrano[2, 3-c]pyrazole and Spiro-2-oxindole Derivatives[J]. Tetrahedron, 2014,70(36):6088-6099. doi: 10.1016/j.tet.2014.02.077

    5. [5]

      Moosavi-Zare A R, Zolfigol M A, Mousavi-Tashar A. Synthesis of Pyranopyrazole Derivatives by in Situ Generation of Trityl Carbocation under Mild and Neutral Media[J]. Res Chem Intermed, 2016,42(10):7305-7312. doi: 10.1007/s11164-016-2537-4

    6. [6]

      Sabry N M, Mohamed H M, Khattab E S. Synthesis of 4H-chromene, Coumarin, 12H-chromeno[2, 3-d]pyrimidine Derivatives and Some of Their Antimicrobial and Cytotoxicity Activities[J]. Eur J Med Chem, 2011,46(2):765-772. doi: 10.1016/j.ejmech.2010.12.015

    7. [7]

      Costa M, Proenca F. 2-Aryl-1, 9-dihydrochromeno[3, 2-d]imidazoles:A Facile Synthesis from Salicylaldehydes and Arylideneaminoacetonitrile[J]. Tetrahedron, 2011,67(10):1799-1804. doi: 10.1016/j.tet.2011.01.035

    8. [8]

      Yao C, Jiang B, Li T. Design and an Efficient Synthesis of Natural Product-based Cyclopenta[b]pyran Derivatives with Potential Bioactivity[J]. Bioorg Med Chem Lett, 2011,21(1):599-601. doi: 10.1016/j.bmcl.2010.09.076

    9. [9]

      Zonouz A M, Eskandari I, Khavasi H R. A Green and Convenient Approach for the Synthesis of Methyl 6-Amino-5-cyano-4-aryl-2, 4-dihydropyrano[2, 3-c]pyrazole-3-carboxylates via a One-Pot, Multi-component Reaction in Water[J]. Tetrahedron Lett, 2012,53(41):5519-5522. doi: 10.1016/j.tetlet.2012.08.010

    10. [10]

      Mandha S R, Siliveri S, Alla M. Eco-friendly Synthesis and Biological Evaluation of Substituted Pyrano[2, 3-c]pyrazoles[J]. Bioorg Med Chem Lett, 2012,22(16):5272-5278. doi: 10.1016/j.bmcl.2012.06.055

    11. [11]

      LI Xiaojun, GUO Hongyun. One-Pot Synthesis of 1, 4-dihydropyrano[2, 3-c]pyrazoles Catalyzed by Basic Ionic Liquids[J]. Chinese J Org Chem, 2012,32(1):127-132.  

    12. [12]

      Mecadon H, Rohman Md R, Rajbangshi M. γ-Alumina as a Recyclable Catalyst for the Four-Component Synthesis of 6-Amino-4-alkyl/aryl-3-methyl-2, 4-dihydropyrano[2, 3-c]pyrazole-5-carbonitriles in Aqueous Medium[J]. Tetrahedron Lett, 2011,52(19):2523-2525. doi: 10.1016/j.tetlet.2011.03.036

    13. [13]

      WANG Yinglei, LUO Jun, XING Tantan. Synthesis of Pyrano[2, 3-c]pyrazoles Catalyzed by Poly(Ethylene Glycol) Bridged Triethylamine Functionalized Dication Ionic Liquid[J]. Chinese J Org Chem, 2013,33(9):2016-2021.  

    14. [14]

      Zhou C F, Li J J, Su W K. Morpholine Triflate Promoted One-Pot, Four-Component Synthesis of Dihydropyrano[2, 3-c]pyrazoles[J]. Chinese Chem Lett, 2016,27(11):1686-1690. doi: 10.1016/j.cclet.2016.05.010

    15. [15]

      Wu M, Feng Q, Wan D. Ctacl as Catalyst for Four-Component, One-Pot Synthesis of Pyranopyrazole Derivatives in Aqueous Medium[J]. Synth Commun, 2013,43(12):1721-1726. doi: 10.1080/00397911.2012.666315

    16. [16]

      Moosavi-Zare A R, Zolfigol M A, Noroozizadeh E. Synthesis of 6-Amino-4-(4-methoxyphenyl)-5-cyano-3-methyl-1-phenyl-1, 4-dihydropyrano[2, 3-c]pyrazoles Using Disulfonic Acid Imidazolium Chloroaluminate as a Dual and Heterogeneous Catalyst[J]. New J Chem, 2013,37(12):4089-4094. doi: 10.1039/c3nj00629h

    17. [17]

      Brahmachari G, Banerjee B. Facile and One-Pot Access to Diverse and Densely Functionalized 2-Amino-3-cyano-4H-pyrans and Pyran-annulated Heterocyclic Scaffolds via an Eco-friendly Multicomponent Reaction at Room Temperature Using Urea as a Novel Organo-catalyst[J]. ACS Sustainable Chem Eng, 2014,2(3):411-422. doi: 10.1021/sc400312n

    18. [18]

      Ilovaisky A I, Medvedev M G, Merkulova V M. Green Approach to the Design of Functionalized Medicinally Privileged 4-Aryl-1, 4-dihydropyrano[2, 3-c]-pyrazole-5-carbonitrile Scaffold[J]. J Heterocycl Chem, 2014,51(2):523-526. doi: 10.1002/jhet.v51.2

    19. [19]

      Tamaddon F, Alizadeh M. A Four-component Synthesis of Dihydropyrano[2, 3-c]pyrazoles in a New Water-Based Worm-Like Micellar Medium[J]. Tetrahedron Lett, 2014,55(26):3588-3591. doi: 10.1016/j.tetlet.2014.04.122

    20. [20]

      Ebrahimipour S Y, Ranjabr Z R, Kermani E T. A Mixed-ligand Ternary Complex of Nickel(Ⅱ):Synthesis, Characterization and Catalytic Investigation for the Synthesis of Pyranopyrazoles[J]. Trans Met Chem, 2015,40(1):39-45. doi: 10.1007/s11243-014-9887-9

    21. [21]

      Elinson M N, Nasybullin R F, Nikishin G I. Sodium Acetate Catalyzed Tandem Knoevenagel Michael Multicomponent Reaction of Aldehydes, 2-Pyrazolin-5-ones, and Cyano-functionalized C-H Acids:Facile and Efficient Way to 3-(5-Hydroxypyrazol-4-yl)-3-aryl-propionitriles[J]. C R Chim, 2013,16(9):789-794. doi: 10.1016/j.crci.2013.03.003

    22. [22]

      Elinson M N, Nasybullin R F, Ryzhkov F V. Solvent-free and On-water' Multicomponent Assembling of Aldehydes, 3-Methyl-2-pyrazoline-5-one, and Malononitrile:Fast and Efficient Approach to Medicinally Relevant Pyrano[2, 3-c]pyrazole Scaffold[J]. Monatsh Chem, 2015,146(4):631-635. doi: 10.1007/s00706-014-1318-2

    23. [23]

      Vekariya R H, Patel K D, Pate H. A Green and One-pot Synthesis of a Library of 1, 4-Dihydropyrano[2, 3-c]-pyrazole-5-carbonitrile Derivatives Using Thiourea Dioxide(TUD) as an Efficient and Reusable Organocatalyst[J]. Res Chem Intermed, 2016,42(5):4683-4696. doi: 10.1007/s11164-015-2308-7

    24. [24]

      Moosavi-Zare A R, Zolfigol M A, Salehi-Moratab R. Catalytic Application of 1-(Carboxymethyl)pyridinium Iodide on the Synthesis of Pyranopyrazole Derivatives[J]. J Mol Catal A:Chem, 2016,415:144-150. doi: 10.1016/j.molcata.2016.02.003

    25. [25]

      Huang X, Li Z, Wang D. Bovine Serum Albumin:An Efficient and Green Biocatalyst for the One-Pot Four-Component Synthesis of Pyrano[2, 3-c]pyrazoles[J]. Chinese J Catal, 2016,37(9):1461-1467. doi: 10.1016/S1872-2067(15)61088-9

    26. [26]

      Vekariya R H, Patel K D, Patel H D. Fruit Juice of Citrus Limon as a Biodegradable and Reusable Catalyst for Facile, Eco-friendly and Green Synthesis of 3, 4-Disubstituted Isoxazol-5(4H)-ones and Dihydropyrano[2, 3-c]-pyrazole Derivatives[J]. Res Chem Intermed, 2016,42(10):7559-7579. doi: 10.1007/s11164-016-2553-4

    27. [27]

      Zakeri M, Nasef M M, Kargaran T. Synthesis of Pyrano[2, 3-c]pyrazoles by Ionic Liquids under Green and Eco-safe Conditions[J]. Res Chem Intermed, 2017,43(2):717-728. doi: 10.1007/s11164-016-2648-y

    28. [28]

      WANG Huiyan, ZOU Yi, TAO Chuanzhou. One-pot Four-component Synthesis of Dihydropyrano[2, 3-c]pyrazoles under Ultrasound Irradiations[J]. Chinese J Org Chem, 2011,31(12):2161-2166.  

    29. [29]

      Zou Y, Hu Y, Liu H. An Efficient and Green Synthesis of 6-Amino-3-phenyl-4-aryl-1, 4-dihydropyrano[2, 3-c]pyrazole-5-carbonitrile Derivatives under Ultrasound Irradiation in Aqueous Medium[J]. J Heterocycl Chem, 2013,50(5):1174-1179.

    30. [30]

      Dekamin M G, Alikhani M, Emami A. An Effcient Catalyst and Solvent-Free Method for the Synthesis of Medicinally Important Dihydropyrano[2, 3-c]pyrazole Derivatives Using Ball Milling Technique[J]. J Iran Chem Soc, 2016,13(3):591-596. doi: 10.1007/s13738-015-0793-7

    31. [31]

      Upadhyay A, Sharma L K, Singh V K. Electrochemically Induced One Pot Synthesis of 1, 4-Dihydropyrano[2, 3-c]-pyrazole-5-carbonitrile Derivatives via a Four Component-tandem Strategy[J]. Tetrahedron Lett, 2017,58(13):1245-1249. doi: 10.1016/j.tetlet.2017.01.049

    32. [32]

      Iravani N, Keshavarz M, Kish H A S. Tin Sulfide Nanoparticles Supported on Activated Carbon as an Efficient and Reusable Lewis Acid Catalyst for Three-Component One-Pot Synthesis of 4H-Pyrano[2, 3-c]pyrazole Derivatives[J]. Chinese J Catal, 2015,36(4):626-633. doi: 10.1016/S1872-2067(14)60284-9

    33. [33]

      Kumar H, Kaur K. Effect of Dipotassium Hydrogen Phosphate on Thermodynamic Properties of Glycine and L-Alanine in Aqueous Solutions at Different Temperatures[J]. J Chem Thermodyn, 2012,53:86-92. doi: 10.1016/j.jct.2012.04.020

    34. [34]

      Zhang X, Li K, Li H. Dipotassium Hydrogen Phosphate as Reducing Agent for the Efficient Reduction of Graphene Oxide Nanosheets[J]. J Colloid Interface Sci, 2013,409(11):1-7.  

    35. [35]

      Kumar H, Singla M, Mittal H. Volumetric, Acoustic and Viscometric Behaviour of Dipotassium Hydrogen Phosphate and Disodium Hydrogen Phosphate in Aqueous Solution of N-Acetyl Glycine at Different Temperatures[J]. J Chem Thermodyn, 2016,94:204-220. doi: 10.1016/j.jct.2015.10.017

    36. [36]

      Saikia A, Barthakur M G, Borthakur M. Conjugate Base Catalysed One-Pot Synthesis of Pyrazoles from β-Formyl Enamides[J]. Tetrahedron Lett, 2006,47(1):43-46. doi: 10.1016/j.tetlet.2005.10.145

    37. [37]

      Balalaie S, Abdolmohammadi S, Bijanzadeh H R. Diammonium Hydrogen Phosphate as a Versatile and Efficient Catalyst for the One-Pot Synthesis of Pyrano[2, 3-d]pyrimidinone Derivatives in Aqueous Media[J]. Mol Diversity, 2008,12(2):85-91. doi: 10.1007/s11030-008-9079-7

    38. [38]

      Mandhane P G, Joshi R S, Nagargoje D R. Ultrasound-Promoted Greener Approach to Synthesize α-Hydroxy Phosphonates Catalyzed by Potassium Dihydrogen Phosphate under Solvent-free Condition[J]. Tetrahedron Lett, 2010,51(11):1490-1492. doi: 10.1016/j.tetlet.2010.01.031

    39. [39]

      Damavandi S, Sandaroos R. KHPO4/Ultrasonic Irradiation Catalyzed Multicomponent Synthesis of Aminocyanopyrano[3, 2-b]indole[J]. Res Chem Intermed, 2013,39(3):1251-1256. doi: 10.1007/s11164-012-0681-z

    40. [40]

      Bodaghifard M A, Solimannejad M, Asadbegi S. Mild and Green Synthesis of Tetrahydrobenzopyran, Pyranopyrimidinone and Polyhydroquinoline Derivatives and DFT Study on Product Structures[J]. Res Chem Intermed, 2016,42(2):1165-1179. doi: 10.1007/s11164-015-2079-1

    41. [41]

      Abdolmohammadi S, Balalaie S. Novel and Efficient Catalysts for the One-Pot Synthesis of 3, 4-Dihydropyrano[c]chromene Derivatives in Aqueous Media[J]. Tetrahedron Lett, 2007,48(18):3299-3303. doi: 10.1016/j.tetlet.2007.02.135

    42. [42]

      LYU Chengwei, LIU Yanhang, WANG Jiajing. Potassium Dihydrogen Phosphate Catalyzed Yonemitsu Condensation for Synthesis of 5-[(Indol-3-yl)-arylmethyl]-2, 2-dimethyl-1, 3-dioxane-4, 6-dine Derivatives[J]. Chinese J Appl Chem, 2015,32(12):1371-1378. doi: 10.11944/j.issn.1000-0518.2015.12.150165 

    43. [43]

      Gao S, Xiao D, Yang Y. KH2PO4 Promoted Practical and Environmentally Friendly Preparation of Coumarin-3-carboxylic Acids under Solvent-free Condition[J]. Heterocycles, 2016,92(9):1698-1705. doi: 10.3987/COM-16-13510

    44. [44]

      Yü S J, Wu S, Zhao X M. Green and Efficient Synthesis of Acridine-1, 8-diones and Hexahydroquinolines via a KH2PO4 Catalyzed Hantzsch-type Reaction in Aqueous Ethanol[J]. Res Chem Intermed, 2017,43(5):3121-3130. doi: 10.1007/s11164-016-2814-2

    45. [45]

      Kumar A, Rao M S, Rao V K. Sodium Dodecyl Sulfate-assisted Synthesis of 1-(Benzothiazolylamino)methyl-2-naphthols in Water[J]. Aust J Chem, 2010,63(11):1538-1540. doi: 10.1071/CH10209

    46. [46]

      Chanda A, Fokin V V. Organic Synthesis "On Water"[J]. Chem Rev, 2009,109(2):725-748. doi: 10.1021/cr800448q

    47. [47]

      Bhardwaj M, Sahi S, Mahajan H. Novel Heterogeneous Catalyst Systems Based on Pd(0) Nanoparticles onto Amine Functionalized Silica-Cellulose Substrates[Pd(0)-EDA/SCS]:Synthesis, Characterization and Catalytic Activity Toward C-C and C-S Coupling Reactions in Water under Limiting Basic Conditions[J]. J Mol Catal A:Chem, 2015,408:48-59. doi: 10.1016/j.molcata.2015.07.005

    48. [48]

      Brahmachari G. Room Temperature One-pot Green Synthesis of Coumarin-3-carboxylic Acids in Water:A Practical Method for the Large-Scale Synthesis[J]. ACS Sustainable Chem Eng, 2015,3(9):2350-2358. doi: 10.1021/acssuschemeng.5b00826

    49. [49]

      Xiao J, Wen H, Wang L. Catalyst-Free Dehydrative SN1-Type Reaction of Indolyl Alcohols with Diverse Nucleophiles "On Water"[J]. Green Chem, 2016,18(4):1032-1037. doi: 10.1039/C5GC01838B

    50. [50]

      Candeias N R, Branco L C, Gois P M P. More Sustainable Approaches for the Synthesis of N-Based Heterocycles[J]. Chem Rev, 2009,109(6):2703-2802. doi: 10.1021/cr800462w

    51. [51]

      Wang X C, Yang G J, Quan Z J. Synthesis of 2-Substituted Pyrimidines via Cross-coupling Reaction of Pyrimidin-2-yl Sulfonates with Nucleophiles in Polyethylene Glycol 400[J]. Synlett, 2010,41(46):1657-1660.

    52. [52]

      Reddy M V, Kim J S, Lim K T. Polyethylene Glycol (PEG-400):An Efficient Green Reaction Medium for the Synthesis of Benzo[4, 5] imidazo[1, 2-a]-pyrimido[4, 5-d]pyrimidin-4(1H)-ones under Catalyst-free Conditions[J]. Tetrahedron Lett, 2014,55(47):6459-6462. doi: 10.1016/j.tetlet.2014.09.135

    53. [53]

      Khan M N, Karamthulla S, Choudhury L H. Ultrasound Assisted Multicomponent Reactions:A Green Method for the Synthesis of Highly Functionalized Selenopyridines Using Reusable Polyethylene Glycol as Reaction Medium[J]. RSC Adv, 2015,5(28):22168-22172. doi: 10.1039/C5RA02403J

    54. [54]

      Kumar M A, Babu M F S, Srinivasulu K. Polyethylene Glycol in Water:A Simple and Environment Friendly Media for Strecker Reaction[J]. J Mol Catal A:Chem, 2007,265(1-2):268-271. doi: 10.1016/j.molcata.2006.10.030

    55. [55]

      Engel-Andreasen J, Shimpukade B, Ulven T. Selective Copper Catalysed Aromatic N-Arylation in Water[J]. Green Chem, 2013,15(2):336-340. doi: 10.1039/C2GC36589H

    56. [56]

      Nagaraju A, Ramulu B J, Shukla G. Catalyst-free One-pot Four-component Domino Reactions in Water-PEG-400:Highly Efficient and Convergent Approach to Thiazoloquinoline Scaffolds[J]. Green Chem, 2015,17(2):950-958. doi: 10.1039/C4GC01431F

    57. [57]

      Zhang J, Yao J, Liu J. Four-component Reaction Between Naphthols, Substituted β-Nitrostyrenes, Substituted Benzaldehydes and Ammonium Acetate in Water-PEG-400:An Approach to Construct Polysubstituted Naphthofuranamines[J]. RSC Adv, 2015,5(60):48580-48585. doi: 10.1039/C5RA07642K

    58. [58]

      Santaniello E, Ferraboschi P, Sozzani P. Efficient and Selective Oxidation of Alcohols by Potassium Dichromate Solutions[J]. Synthesis, 1980,1980(8):646-647. doi: 10.1055/s-1980-29154

    59. [59]

      Wang L, Huang M, Zhu X. Polyethylene Glycol(PEG-200)-Promoted Sustainable One-Pot Three-Component Synthesis of 3-Indole Derivatives in Water[J]. Appl Catal A:General, 2013,454:160-163. doi: 10.1016/j.apcata.2012.12.008

  • 加载中
    1. [1]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    2. [2]

      Yanting HUANGHua XIANGMei PAN . Construction and application of multi-component systems based on luminous copper nanoclusters. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2075-2090. doi: 10.11862/CJIC.20240196

    3. [3]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    4. [4]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    5. [5]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    6. [6]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    7. [7]

      Xinhao Yan Guoliang Hu Ruixi Chen Hongyu Liu Qizhi Yao Jiao Li Lingling Li . Polyethylene Glycol-Ammonium Sulfate-Nitroso R Salt System for the Separation of Cobalt (II). University Chemistry, 2024, 39(6): 287-294. doi: 10.3866/PKU.DXHX202310073

    8. [8]

      Yihao Zhao Jitian Rao Jie Han . Synthesis and Photochromic Properties of 3,3-Diphenyl-3H-Naphthopyran: Design and Teaching Practice of a Comprehensive Organic Experiment. University Chemistry, 2024, 39(10): 149-155. doi: 10.3866/PKU.DXHX202402050

    9. [9]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    10. [10]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    11. [11]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    12. [12]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    13. [13]

      Yongzhi LIHan ZHANGGangding WANGYanwei SUILei HOUYaoyu WANG . A two-dimensional metal-organic framework for the determination of nitrofurantoin and nitrofurazone in aqueous solution. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 245-253. doi: 10.11862/CJIC.20240307

    14. [14]

      . . Chinese Journal of Inorganic Chemistry, 2024, 40(11): 0-0.

    15. [15]

      Jingzhao Cheng Shiyu Gao Bei Cheng Kai Yang Wang Wang Shaowen Cao . 4-氨基-1H-咪唑-5-甲腈修饰供体-受体型氮化碳光催化剂的构建及其高效光催化产氢研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-. doi: 10.3866/PKU.WHXB202406026

    16. [16]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    17. [17]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    18. [18]

      Yinwu Su Xuanwen Zheng Jianghui Du Boda Li Tao Wang Zhiyan Huang . Green Synthesis of 1,3-Dibromoacetone Using Halogen Exchange Method: Recommending a Basic Organic Synthesis Teaching Experiment. University Chemistry, 2024, 39(5): 307-314. doi: 10.3866/PKU.DXHX202311092

    19. [19]

      Liangzhen Hu Li Ni Ziyi Liu Xiaohui Zhang Bo Qin Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001

    20. [20]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

Metrics
  • PDF Downloads(2)
  • Abstract views(429)
  • HTML views(34)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return