Citation: YANG Kecheng, CUI Fengchao, LI Yunqi. Distribution and Dynamics of Water and Urea in Hydration Shell of Ribonuclease Sa: A Molecular Dynamics Simulation Study[J]. Chinese Journal of Applied Chemistry, ;2018, 35(10): 1243-1248. doi: 10.11944/j.issn.1000-0518.2018.10.170342 shu

Distribution and Dynamics of Water and Urea in Hydration Shell of Ribonuclease Sa: A Molecular Dynamics Simulation Study

  • Corresponding author: CUI Fengchao, fccui@ciac.ac.cn LI Yunqi, yunqi@ciac.ac.cn
  • Received Date: 18 September 2017
    Revised Date: 16 October 2017
    Accepted Date: 24 November 2017

    Fund Project: the National Natural Science Foundation of China 21504092the National Natural Science Foundation of China 21374117Supported by the National Natural Science Foundation of China(No.21374117, No.21504092), the One Hundred Person Project of the Chinese Academy of Sciences

Figures(3)

  • Extensive molecular dynamics simulations were performed to study the distribution and dynamics of water and urea in the hydration shell of ribonuclease Sa(RNase Sa) under different urea concentrations. It is found that urea molecules have stronger interactions with protein than water molecules and are enriched on the surface of RNase Sa by displacing water molecules. Urea molecules prefer to interact with hydrophobic residues and form hydrogen bonds with the backbone of RNase Sa. The transitional and rotational dynamics of urea molecules are much slower than those of water molecules. Besides, the increased urea concentrations can slow down the transitional and rotational dynamics of water molecules, but have no regular influences on the dynamics of urea molecules. Our results can help understanding the different influences of urea and water molecules on the stability of proteins.
  • 加载中
    1. [1]

      Biedermannová L, Schneider B. Hydration of Proteins and Nucleic Acids:Advances in Experiment and Theory. A Review[J]. Biochim Biophys Acta, 2016,1860(9):1821-1835. doi: 10.1016/j.bbagen.2016.05.036

    2. [2]

      Hu J, Cao Z X. Water Science on the Molecular Scale:New Insights into the Characteristics of Water[J]. Natl Sci Rev, 2014,1(2):179-181. doi: 10.1093/nsr/nwt015

    3. [3]

      Dill K A, MacCallum J L. The Protein-Folding Problem, 50 Years On[J]. Science, 2012,338(6110):1042-1046. doi: 10.1126/science.1219021

    4. [4]

      Walters J, Milam S L, Clark A C. (2009)Practical Approaches to Protein Folding and Assembly: Spectroscopic Strategies in Thermodynamics and Kinetics[M]//Michael L Johnson, Jo M Holt, Gary K Ackers. Methods in Enzymology. Academic Press, 2009, 8: 1-39.

    5. [5]

      Bellissent-Funel M C, Hassanali A, Havenith M. Water Determines the Structure and Dynamics of Proteins[J]. Chem Rev, 2016,116(13):7673-7697. doi: 10.1021/acs.chemrev.5b00664

    6. [6]

      Doster W, Cusack S, Petry W. Dynamical Transition of Myoglobin Revealed by Inelastic Neutron Scattering[J]. Nature, 1989,337(6209):754-756. doi: 10.1038/337754a0

    7. [7]

      Qvist J, Ortega G, Tadeo X. Hydration Dynamics of a HalophilicProtein in Folded and Unfolded States[J]. J Phys Chem B, 2012,116(10):3436-3444. doi: 10.1021/jp3000569

    8. [8]

      Canchi D R, García A E. Cosolvent Effects on Protein Stability[J]. Annu Rev Phys Chem, 2013,64(1):273-293. doi: 10.1146/annurev-physchem-040412-110156

    9. [9]

      Frank H S, Franks F. Structural Approach to the Solvent Power of Water for Hydrocarbons; Urea as a Structure Breaker[J]. J Chem Phys, 1968,48(10):4746-4757. doi: 10.1063/1.1668057

    10. [10]

      Hua L, Zhou R, Thirumalai D. Urea Denaturation by Stronger Dispersion Interactions with Proteins than Water Implies a 2-Stage Unfolding[J]. Proc Natl Acad Sci USA, 2008,105(44):16928-16933. doi: 10.1073/pnas.0808427105

    11. [11]

      Candotti M, Esteban-Martín S, Salvatella X. Toward an Atomistic Description of the Urea-Denatured State of Proteins[J]. Proc Natl Acad Sci USA, 2013,110(15):5933-5938. doi: 10.1073/pnas.1216589110

    12. [12]

      Canchi D R, García A E. Backbone and Side-Chain Contributions in Protein Denaturation by Urea[J]. Biophys J, 2011,100(6):1526-1533. doi: 10.1016/j.bpj.2011.01.028

    13. [13]

      Candotti M, Pérez A, Ferrer-Costa C. Exploring Early Stages of the Chemical Unfolding of Proteins at the Proteome Scale[J]. PLoS Comput Biol, 2013,9(12)e1003393. doi: 10.1371/journal.pcbi.1003393

    14. [14]

      Laurents D, Perez-Canadillas J M, Santoro J. Solution Structure and Dynamics of Ribonuclease Sa[J]. Proteins:Struct Funct Bioinf, 2001,44(3):200-211. doi: 10.1002/prot.v44:3

    15. [15]

      Phillips J C, Braun R, Wang W. Scalable Molecular Dynamics with Namd[J]. J Comput Chem, 2005,26(16):1781-1802. doi: 10.1002/(ISSN)1096-987X

    16. [16]

      Mackerell A D, Feig M, Brooks C L. Extending the Treatment of Backbone Energetics in Protein Force Fields:Limitations of Gas-Phase Quantum Mechanics in Reproducing Protein Conformational Distributions in Molecular Dynamics Simulations[J]. J Comput Chem, 2004,25(11):1400-1415. doi: 10.1002/jcc.v25:11

    17. [17]

      MacKerell A D, Bashford D, Bellott M. All-atom Empirical Potential for Molecular Modeling and Dynamics Studies of Proteins[J]. J Phys Chem B, 1998,102(18):3586-3616. doi: 10.1021/jp973084f

    18. [18]

      Vanommeslaeghe K, Hatcher E, Acharya C. Charmm General Force Field:A Force Field for Drug-Like Molecules Compatible with the Charmm All-atom Additive Biological Force Fields[J]. J Comput Chem, 2010,31(4):671-690.  

    19. [19]

      Berman H M, Westbrook J, Feng Z. The Protein Data Bank[J]. Nucl Acids Res, 2000,28(1):235-242. doi: 10.1093/nar/28.1.235

    20. [20]

      Humphrey W, Dalke A, Schulten K. Vmd:Visual molecular dynamics[J]. J Mol Graph, 1996,14(1):33-38. doi: 10.1016/0263-7855(96)00018-5

  • 加载中
    1. [1]

      Congying Lu Fei Zhong Zhenyu Yuan Shuaibing Li Jiayao Li Jiewen Liu Xianyang Hu Liqun Sun Rui Li Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097

    2. [2]

      Zhi Zhou Yu-E Lian Yuqing Li Hui Gao Wei Yi . New Insights into the Molecular Mechanism Behind Clinical Tragedies of “Cephalosporin with Alcohol”. University Chemistry, 2025, 40(3): 42-51. doi: 10.12461/PKU.DXHX202403104

    3. [3]

      Zhenming Xu Yibo Wang Zhenhui Liu Duo Chen Mingbo Zheng Laifa Shen . Experimental Design of Computational Materials Science and Computational Chemistry Courses Based on the Bohrium Scientific Computing Cloud Platform. University Chemistry, 2025, 40(3): 36-41. doi: 10.12461/PKU.DXHX202403096

    4. [4]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    5. [5]

      Qianqian Liu Xing Du Wanfei Li Wei-Lin Dai Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016

    6. [6]

      Shanghua Li Malin Li Xiwen Chi Xin Yin Zhaodi Luo Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003

    7. [7]

      Xintian Xie Sicong Ma Yefei Li Cheng Shang Zhipan Liu . Application of Machine Learning Potential-based Theoretical Simulations in Undergraduate Teaching Laboratory Course Design. University Chemistry, 2025, 40(3): 140-147. doi: 10.12461/PKU.DXHX202405164

    8. [8]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    9. [9]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    10. [10]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    11. [11]

      Ruming Yuan Pingping Wu Laiying Zhang Xiaoming Xu Gang Fu . Patriotic Devotion, Upholding Integrity and Innovation, Wholeheartedly Nurturing the New: The Ideological and Political Design of the Experiment on Determining the Thermodynamic Functions of Chemical Reactions by Electromotive Force Method. University Chemistry, 2024, 39(4): 125-132. doi: 10.3866/PKU.DXHX202311057

    12. [12]

      Na Li Limin Shao . Deduction of the General Formula of the Inverse Function of the Titration Curve. University Chemistry, 2025, 40(3): 390-401. doi: 10.12461/PKU.DXHX202409134

    13. [13]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    14. [14]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    15. [15]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    16. [16]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    17. [17]

      Ruoxi Sun Yiqian Xu Shaoru Rong Chunmiao Han Hui Xu . The Enchanting Collision of Light and Time Magic: Exploring the Footprints of Long Afterglow Lifetime. University Chemistry, 2024, 39(5): 90-97. doi: 10.3866/PKU.DXHX202310001

    18. [18]

      Lei Shu Zhengqing Hao Kai Yan Hong Wang Lihua Zhu Fang Chen Nan Wang . Development of a Double-Carbon Related Experiment: Preparation, Characterization and Carbon-Capture Ability of Eggshell-Derived CaO. University Chemistry, 2024, 39(4): 149-156. doi: 10.3866/PKU.DXHX202310134

    19. [19]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    20. [20]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . 基于激发态手性铜催化的烯烃EZ异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

Metrics
  • PDF Downloads(0)
  • Abstract views(906)
  • HTML views(278)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return