Citation: AN Liancai, HAN Jiufang, ZHANG Yinghui, BU Xianhe. Research and Application Progress on Porous Organic Polymers for Adsorption and Separation of Organic Pollutants in Water System[J]. Chinese Journal of Applied Chemistry, ;2018, 35(9): 1019-1025. doi: 10.11944/j.issn.1000-0518.2018.09.180184 shu

Research and Application Progress on Porous Organic Polymers for Adsorption and Separation of Organic Pollutants in Water System

  • Corresponding author: ZHANG Yinghui, zhangyhi@nankai.edu.cn BU Xianhe, buxh@nankai.edu.cn
  • Received Date: 21 May 2018
    Revised Date: 23 May 2018
    Accepted Date: 23 May 2018

    Fund Project: the National Natural Science Foundation of China 21531005Supported by the National Natural Science Foundation of China(No.21531005), Tianjin Natural Science Foundation(No.16JCZDJC36900)Tianjin Natural Science Foundation 16JCZDJC36900

Figures(3)

  • Organic pollutants in water system are widely viewed as a serious threat to ecologic safety and human health, and it has become a global issue to develop effect technology to control and reduce organic pollutants in water system. Adsorption treatment, based on various porous materials, is believed to be a promising solution to this question. Porous organic polymers (POPs), characterized with high specific surface area, high physical and chemical stability, and easy functionalization, exhibit great potential application in tackling organic pollution of water. In this article, the recent advances were briefly reviewed on the application of POPs in adsorbing organic pollutants such as common organic solvents, pesticides and insecticides, organic dyes in water system.
  • 加载中
    1. [1]

      HUANG Zhihui, LI Yuzhen, ZHANG Ning. Research Progress of Inorganic, Organic and Composite Materials Handing Organic Pollutants[J]. Chem Res Appl, 2016,28(6):770-776. doi: 10.3969/j.issn.1004-1656.2016.06.003 

    2. [2]

      Davankov V A, Rogozhin S V, Tsyurupa M P. Macrocrosslinked Polystyrenes: US Patent, Appl[P]. 1971, 3729, 457.

    3. [3]

      McKeown N B, Makhseed S, Budd P M. Phthalocyanine-based Nanoporous Network Polymers[J]. Chem Commun, 2002,23:2780-2781.  

    4. [4]

      Liu X, Xu Y, Jiang D. Conjugated Microporous Polymers as Molecular Sensing Devices:Microporous Architecture Enables Rapid Response and Enhances Sensitivity in Fluorescence-On and Fluorescence-Off Sensing[J]. J Am Chem Soc, 2012,134(21):8738-8741. doi: 10.1021/ja303448r

    5. [5]

      Cote A P, Benin A I, Ockwig N W. Porous, Crystalline, Covalent Organic Frameworks[J]. Science, 2005,310(5751):1166-1170. doi: 10.1126/science.1120411

    6. [6]

      Ben T, Ren H, Ma S. Targeted Synthesis of a Porous Aromatic Framework with High Stability and Exceptionally High Surface Area[J]. Angew Chem Int Ed, 2009,121(50):9621-9624. doi: 10.1002/ange.200904637

    7. [7]

      Han J, Fan X, Zhuang Z Z. A Triphenylene-based Conjugated Microporous Polymer:Construction, Gas Adsorption, and Fluorescence Detection Properties[J]. RSC Adv, 2015,5(20):15350-15353. doi: 10.1039/C4RA13696A

    8. [8]

      Song W C, Xu X K, Chen Q. Nitrogen-rich Diaminotriazine-based Porous Organic Polymers for Small Gas Storage and Selective Uptake[J]. Polym Chem, 2013,4(17):4690-4696. doi: 10.1039/c3py00590a

    9. [9]

      Chang Z, Zhang D S, Chen Q. Microporous Organic Polymers for Gas Storage and Separation Applications[J]. Phys Chem Chem Phys, 2013,15(15):5430-5442. doi: 10.1039/c3cp50517k

    10. [10]

      Dalapati S, Jin E, Addicoat M. Highly Emissive Covalent Organic Frameworks[J]. J Am Chem Soc, 2016,138(18):5797-5800. doi: 10.1021/jacs.6b02700

    11. [11]

      Ding S Y, Dong M, Wang Y W. Thioether-Based Fluorescent Covalent Organic Framework for Selective Detection and Facile Removal of Mercury(Ⅱ)[J]. J Am Chem Soc, 2016,138(9):3031-3037. doi: 10.1021/jacs.5b10754

    12. [12]

      Weng J Y, Xu Y L, Song W C. Tuning the Adsorption and Fluorescence Properties of Aminal-Linked Porous Organic Polymers Through N-Heterocyclic Group Decoration[J]. J Polym Sci Polym Chem, 2016,54(12):1724-1730. doi: 10.1002/pola.28028

    13. [13]

      Ding S Y, Gao J, Wang Q. Construction of Covalent Organic Framework for Catalysis:Pd/COF-LZU1 in Suzuki-Miyaura Coupling Reaction[J]. J Am Chem Soc, 2011,133(49):19816-19822. doi: 10.1021/ja206846p

    14. [14]

      Fang Q, Wang J, Gu S. 3D Porous Crystalline Polyimide Covalent Organic Frameworks for Drug Delivery[J]. J Am Chem Soc, 2015,137(26):8352-8355. doi: 10.1021/jacs.5b04147

    15. [15]

      Tian D, Zhang H Z, Zhang D S. Li-Ion Storage and Gas Adsorption Properties of Porous Polyimides(PIs)[J]. RSC Adv, 2014,4(15):7506-7510. doi: 10.1039/c3ra45563g

    16. [16]

      Yang D H, Yao Z Q, Wu D H. Structure-modulated Crystalline Covalent Organic Frameworks as High-rate Cathodes for Li-Ion Batteries[J]. J Mater Chem A, 2016,4(47):18621-18627. doi: 10.1039/C6TA07606H

    17. [17]

      LIN Yijun, ZHU Yunlong, KUANG Guichao. Application of Porous Organic Polymers in the Radioactive Iodine Adsorption[J]. Prog Chem, 2017,29(7):766-775.  

    18. [18]

      CHEN Dongyang, LIU Cheng, WANG Jinyan. Research Progress on the Electrochemical Application of Nanoporous Organic Polymers[J]. Acta Polym Sin, 2018,5:559-570.  

    19. [19]

      Muhammad, Mazen, Ihsanullaha. Removal of Heavy Metals and Organic Pollutants from Water Using Dendritic Polymers Based Adsorbents:A Critical Review[J]. Sep Purif Technol, 2018,191:400-423. doi: 10.1016/j.seppur.2017.09.011

    20. [20]

      Li A, Sun H X, Tan D Z. Superhydrophobic Conjugated Microporous Polymers for Separation and Adsorption[J]. Energy Environ Sci, 2011,4(6):2062-2065. doi: 10.1039/c1ee01092a

    21. [21]

      Zhong M, Su P K, Lai J Y. Organic Solvent-resistant and Thermally Stable Polymeric Microfiltration Membranes Based on Crosslinked Polybenzoxazine for Size-selective Particle Separation and Gravity-driven Separation on Oil-Water Emulsions[J]. J Membr Sci, 2018,550:18-25. doi: 10.1016/j.memsci.2017.12.068

    22. [22]

      Xue Y M, Dai P C, Jiang X F. Template-free Synthesis of Boron Nitride Foam-like Porous Monoliths and Their High-end Applications in Water Purification[J]. J Mater Chem A, 2016,4(4):1469-1478. doi: 10.1039/C5TA08134C

    23. [23]

      Wan X Z, Umair A, Wang Y K. Highly Porous and Chemical Resistive P(TFEMA-DVB) Monolith with Tunable Morphology for Rapid Oil/Water Separation[J]. RSC Adv, 2018,8(15):8355-8364. doi: 10.1039/C8RA00501J

    24. [24]

      Zhu H G, Yang S, Chen D Y. A Robust Absorbent Material Based on Light-Responsive Superhydrophobic Melamine Sponge for Oil Recovery[J]. Adv Mater Interfaces, 2016,3(5)1500683. doi: 10.1002/admi.201500683

    25. [25]

      Xiao Z Y, Zhang M H, Fan W D. Highly Efficient Oil/Water Separation and Trace Organic Contaminants Removal Based on Superhydrophobic Conjugated Microporous Polymer Coated Devices[J]. Chem Eng J, 2017,326:640-646. doi: 10.1016/j.cej.2017.06.023

    26. [26]

      Yu L H, Hao G Z, Xiao L. Robust Magnetic Polystyrene Foam for High Efficiency and Removal Oil from Water Surface[J]. Sep Purif Technol, 2017,173:121-128. doi: 10.1016/j.seppur.2016.09.022

    27. [27]

      Du R, Zhang N, Xu H. CMP Aerogels:Ultrahigh-Surface-Area Carbon-Based Monolithic Materials with Superb Sorption Performance[J]. Adv Mater, 2014,26(47):8053-8058. doi: 10.1002/adma.v26.47

    28. [28]

      Du R, Zheng Z, Mao N N. Fluorosurfactants-Directed Preparation of Homogeneous and Hierarchical-Porosity CMP Aerogels for Gas Sorption and Oil Cleanup[J]. Adv Sci, 2015,2(10)1570040.  

    29. [29]

      Rao K V, Sudip M, Tapas K M. Guest-Responsive Reversible Swelling and Enhanced Fluorescence in a Super-Absorbent, Dynamic Microporous Polymer[J]. Chem Eur J, 2012,18(15):4505-4509. doi: 10.1002/chem.201103750

    30. [30]

      Ji W H, Su R H, Geng Y L. Rapid, Low Temperature Synthesis of Molecularly Imprinted Covalent Organic Frameworks for the Highly Selective Extraction of Cyano Pyrethroids from Plant Samples[J]. Anal Chim Acta, 2018,1001:179-188. doi: 10.1016/j.aca.2017.12.001

    31. [31]

      Lu Q Y, Ma Y C, Li H. Postsynthetic Functionalization of Three-Dimensional Covalent Organic Frameworks for Selective Extraction of Lanthanide Ions[J]. Angew Chem Int Ed, 2018,57(21):1-7.  

    32. [32]

      Salonen L M, Pinela S R, Fernandes S P S. Adsorption of Marine Phycotoxin Okadaic Acid on a Covalent Organic Framework[J]. J Chromatogr A, 2017,1525:17-22. doi: 10.1016/j.chroma.2017.10.017

    33. [33]

      Zheng C L, Du M M, Rong Y Z. Fast AdsorptIon of ErythromycIn on the Conjugated Microporous Polymers[J]. Adv Mater Res, 2015,1073/1076:32-38.  

    34. [34]

      Zheng C L, Du M M, Li F. Selective Adsorption of Metronidazole on Conjugated Microporous Polymers[J]. Sci China Chem, 2015,58(7):1227-1234. doi: 10.1007/s11426-015-5334-9

    35. [35]

      Zheng C L, Feng S S, Wang Q R. Adsorption Thermodynamics of Metronidazole on the Conjugated Microporous Polymers[J]. J Residuals Sci Technol, ,13(S1):101-105. doi: 10.12783/issn.1544-8053

    36. [36]

      Wang Z H, Zhang P B, Hu F. A Crosslinked β-Cyclodextrin Polymer Used for Rapid Removal of a Broadspectrum of Organic Micropollutants from Water[J]. Carbohydr Polym, 2017,177:224-231. doi: 10.1016/j.carbpol.2017.08.059

    37. [37]

      Luo Q, Zhao C, Liu G. A Porous AromaticFramework Constructed from Benzene Rings Has a High Adsorption Capacity for Perfluorooctane Sulfonate[J]. Sci Rep, 2016,620311. doi: 10.1038/srep20311

    38. [38]

      Hou Y X, Zhang X M, Wang C M. Novel Imine-linked Porphyrin Covalent Organic Frameworks with Good Adsorption Removing Property of RhB[J]. New J Chem, 2017,41(14):6145-6151. doi: 10.1039/C7NJ00424A

    39. [39]

      Zhu X, An S H, Liu Y. Efficient Removal of Organic Dye Pollutants Using Covalent Organic Frameworks[J]. AIChE J, 2017,63(8):3470-3478. doi: 10.1002/aic.v63.8

    40. [40]

      Huang N, Wang P, Addicoat M A. Ionic Covalent Organic Frameworks:Design of a Charged Interface Aligned on 1D Channel Walls and Its Unusual Electrostatic Functions[J]. Angew Chem Int Ed, 2017,56(18):4982-4986. doi: 10.1002/anie.201611542

    41. [41]

      Yu S, Lyu H, Tian J. A Polycationic Covalent Organic Framework:A Robust Adsorbent for Anionic Dye Pollutants[J]. Polym Chem, 2016,7(20):3392-3397. doi: 10.1039/C6PY00281A

    42. [42]

      Li Z, Li H, Guan X. Three-Dimensional Ionic Covalent Organic Frameworks for Rapid, Reversible, and Selective Ion Exchange[J]. J Am Chem Soc, 2017,139(49):17771-17774. doi: 10.1021/jacs.7b11283

    43. [43]

      Bekir S, Budd P M. Selective Dye Adsorption by Chemically-modified and Thermally-treated Polymers of Intrinsic Microporosity[J]. J Colloid Interface Sci, 2017,492:81-91. doi: 10.1016/j.jcis.2016.12.048

    44. [44]

      Zhang H J, Wang J H, Zhang Y H. Hollow Porous Organic Polymer:High-Performance Adsorption for Organic Dye in Aqueous Solution[J]. J Polym Sci Polym Chem, 2017,55(8):1329-1337. doi: 10.1002/pola.v55.8

    45. [45]

      Wang J H, Zhang Y, An L C. Sulfonated Hollow Covalent Organic Polymer:Highly-Selective Adsorption Toward Cationic Organic Dyes over Anionic Ones in Aqueous Solution[J]. Chinese J Chem, .  

    46. [46]

      Ning G H, Chen Z, Gao Q. Salicylideneanilines-Based Covalent Organic Frameworks as Chemoselective Molecular Sieves[J]. J Am Chem Soc, 2017,139(26):8897-8904. doi: 10.1021/jacs.7b02696

    47. [47]

      Wang B, Xie Z, Li Y. Dual-Functional Conjugated Nanoporous Polymers for Efficient Organic Pollutants Treatment in Water:A Synergistic Strategy of Adsorption and Photocatalysis[J]. Macromolecules, 2018,51(9):3443-3449. doi: 10.1021/acs.macromol.8b00669

    48. [48]

      He S J, Rong Q F, Niu H Y. Construction of a Superior Visible-light-driven Photocatalyst Based on a C3N4 Active Centrephotoelectron Shift Platform-electron Withdrawing Unit Triadic Structure Covalent Organic Framework[J]. Chem Commun, 2017,53(69):9636-9639. doi: 10.1039/C7CC04515H

  • 加载中
    1. [1]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    2. [2]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    3. [3]

      Wei Li Jinfan Xu Yongjun Zhang Ying Guan . 共价有机框架整体材料的制备及食品安全非靶向筛查应用——推荐一个仪器分析综合化学实验. University Chemistry, 2025, 40(6): 276-285. doi: 10.12461/PKU.DXHX202406013

    4. [4]

      Hui Wang Abdelkader Labidi Menghan Ren Feroz Shaik Chuanyi Wang . 微观结构调控的g-C3N4在光催化NO转化中的最新进展:吸附/活化位点的关键作用. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-. doi: 10.1016/j.actphy.2024.100039

    5. [5]

      Xinxin YUYongxing LIUXiaohong YIMiao CHANGFei WANGPeng WANGChongchen WANG . Photocatalytic peroxydisulfate activation for degrading organic pollutants over the zero-valent iron recovered from subway tunnels. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 864-876. doi: 10.11862/CJIC.20240438

    6. [6]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    7. [7]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    8. [8]

      Jing Wang Pingping Li Yuehui Wang Yifan Xiu Bingqian Zhang Shuwen Wang Hongtao Gao . Treatment and Discharge Evaluation of Phosphorus-Containing Wastewater. University Chemistry, 2024, 39(5): 52-62. doi: 10.3866/PKU.DXHX202309097

    9. [9]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    10. [10]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

    11. [11]

      Qianlang Wang Jijun Sun Qian Chen Quanqin Zhao Baojuan Xi . The Appeal of Organophosphorus Compounds: Clearing Their Name. University Chemistry, 2025, 40(4): 299-306. doi: 10.12461/PKU.DXHX202405205

    12. [12]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    13. [13]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    14. [14]

      Yongjian Zhang Fangling Gao Hong Yan Keyin Ye . Electrochemical Transformation of Organosulfur Compounds. University Chemistry, 2025, 40(5): 311-317. doi: 10.12461/PKU.DXHX202407035

    15. [15]

      Shasha Ma Zujin Yang Jianyong Zhang . Facile Synthesis of FeBTC Metal-Organic Gel and Its Adsorption of Cr2O72−: A Physical Chemistry Innovation Experiment. University Chemistry, 2024, 39(8): 314-323. doi: 10.3866/PKU.DXHX202401008

    16. [16]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    17. [17]

      Liang TANGJingfei NIKang XIAOXiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139

    18. [18]

      CCS Chemistry 综述推荐│绿色氧化新思路:光/电催化助力有机物高效升级

      . CCS Chemistry, 2025, 7(10.31635/ccschem.024.202405369): -.

    19. [19]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    20. [20]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

Metrics
  • PDF Downloads(15)
  • Abstract views(1159)
  • HTML views(112)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return