Metal Sulfide(Phosphide) for Electrocatalytic Hydrogen Evolution Reaction
- Corresponding author: LI Jinghong, jhli@mail.tsinghua.edu.cn
Citation:
YU Peng, LI Jinghong. Metal Sulfide(Phosphide) for Electrocatalytic Hydrogen Evolution Reaction[J]. Chinese Journal of Applied Chemistry,
;2018, 35(9): 1093-1101.
doi:
10.11944/j.issn.1000-0518.2018.09.180180
Borup R, Meyers J, Pivovar B. Scientific Aspects of Polymer Electrolyte Fuel Cell Durability and Degradation[J]. Chem Rev, 2007,107(10):3904-3051. doi: 10.1021/cr050182l
Zheng Y, Jiao Y, Jaroniec M. Advancing the Electrochemistry of the Hydrogen-Evolution Reaction Through Combining Experiment and Theory[J]. Angew Chem, 2015,54(1):52-65. doi: 10.1002/anie.201407031
Wang J, Xu F, Jin H. Non-Noble Metal-based Carbon Composites in Hydrogen Evolution Reaction:Fundamentals to Applications[J]. Adv Mater, 2017,29(14)1605838. doi: 10.1002/adma.v29.14
Anantharaj S, Ede S R, Sakthikumar K. Recent Trends and Perspectives in Electrochemical Water Splitting with an Emphasis to Sulphide, Selenide and Phosphide Catalysts of Fe, Co and Ni:A Review[J]. ACS Catal, 2016,6(12)1605838.
You B, Sun Y. Chalcogenide and Phosphide Soli-State Electrocatalysts for Hydrogen Generation[J]. ChemPlusChem, 2016,81(10):1045-1055. doi: 10.1002/cplu.201600029
ZHANG Pan, ZHOU Kui, CHAEMXHUEN Somboon. Progress of Metal Oxide and Metal-Organic Frame Work Composite Materials[J]. Chinese J Appl Chem, 2018,35(4):369-380.
Shi Z, Nie K, Shao Z J. Phosphorus-Mo2C@carbon Nanowires Toward Efficient Electrochemical Hydrogen Evolution:Composition, Structural and Electronic Regulation[J]. Energy Environ Sci, 2017,10(85):1819-1826.
Qu K, Zheng Y, Zhang X. Promotion of Electrocatalytic Hydrogen Evolution Reaction on Nitrogen-Doped Carbon Nanosheets with Secondary Heteroatoms[J]. ACS Nano, 2017,11(7):7293-7300. doi: 10.1021/acsnano.7b03290
Zheng Y, Jiao Y, Li L H. Toward Design of Synergistically Active Carbon-Based Catalysts for Electrocatalytic Hydrogen Evolution[J]. ACS Nano, 2014,8(5):5290-5296. doi: 10.1021/nn501434a
Zheng Y, Jiao Y, Zhu Y. Hydrogen Evolution by a Metal-Free Electrocatalyst[J]. Nat Commun, 2014,5(4)3783.
Zou X, Huang X, Goswami A. Cobalt-Embedded Nitrogen-Rich Carbon Nanotubes Efficiently Catalyze Hydrogen Evolution Reaction at All pH Values[J]. Angew Chem, 2014,53(17):4372-4376. doi: 10.1002/anie.201311111
Chen W F, Wang C H, Sasaki K. Highly Active and Durable Nanostructured Molybdenum Carbide Electrocatalysts for Hydrogen Production[J]. Energy Environ Sci, 2013,6(3):943-951. doi: 10.1039/c2ee23891h
Youn D H, Han S, Kim J Y. Highly Active and Stable Hydrogen Evolution Electrocatalysts Based on Molybdenum Compounds on Carbon Nanotube-Graphene Hybrid Support[J]. ACS Nano, 2014,8(5):5164-5173. doi: 10.1021/nn5012144
Zhao Y, Kamiya K, Hashimoto K. Hydrogen Evolution by Tungsten Carbonitride Nanoelectrocatalysts Synthesized by the Formation of a Tungsten Acid/Polymer Hybrid in Situ[J]. Angew Chem Int Ed, 2013,52(51):13638-13641. doi: 10.1002/anie.201307527
Chen W F, Sasaki K, Ma C. Hydrogen-Evolution Catalysts Based on Non-Noble Metal Nickel-Molybdenum Nitride Nanosheets[J]. Angew Chem Int Ed, 2012,51(25):6131-6135. doi: 10.1002/anie.201200699
Cao B, Veith G M, Neuefeind J C. Mixed Close-Packed Cobalt Molybdenum Nitrides as Non-Noble Metal Electrocatalysts for the Hydrogen Evolution Reaction[J]. J Am Chem Soc, 2013,135(51):19186-19192. doi: 10.1021/ja4081056
Yan H, Xie Y, Jiao Y. Holey Reduced Graphene Oxide Coupled with an Mo2N-Mo2C Heterojunction for Efficient Hydrogen Evolution[J]. Adv Mater, 2018,30(2)1704156. doi: 10.1002/adma.v30.2
Wu A, Xie Y, Ma H. Integrating the Active OER and HER Components as the Heterostructures for the Efficient Overall Water Splitting[J]. Nano Energy, 2017,44:353-363.
Zhou X, Jiang J, Ding T. Fast Colloidal Synthesis of Scalable Mo-rich Hierarchical Ultrathin MoSe(2-x) Nanosheets for High-Performance Hydrogen Evolution[J]. Nanoscale, 2014,6(19):11046-11051. doi: 10.1039/C4NR02716G
Saadi F H, Carim A I, Velazquez J M. Operando Synthesis of Macroporous Molybdenum Diselenide Films for Electrocatalysis of the Hydrogen-Evolution Reaction[J]. ACS Catal, 2015,4(9):2866-2873.
Xin Y Y, Xiong W L. Mixed Metal Sulfides for Electrochemical Energy Storage and Conversion[J]. Adv Energy Mater, 2018,8(3)1701592. doi: 10.1002/aenm.v8.3
Zhang Y, Zhou Q, Zhu J. Nanostructured Metal Chalcogenides for Energy Storage and Electrocatalysis[J]. Adv Funct Mater, 2017,27(35)1702317. doi: 10.1002/adfm.v27.35
Zou X, Zhang Y. Noble Metal-Free Hydrogen Evolution Catalysts for Water Splitting[J]. Chem Soc Rev, 2015,44(15):5148-5180. doi: 10.1039/C4CS00448E
Liu Y, Li Y, Kang H. Design, Synthesis, and Energy-Related Applications of Metal Sulfides[J]. Mater Horizons, 2016,3(5):402-421. doi: 10.1039/C6MH00075D
Yang H, Zhang Y, Hu F. Urchin-like CoP Nanocrystals as Hydrogen Evolution Reaction and Oxygen Reduction Reaction Dual-Electrocatalyst with Superior Stability[J]. Nano Lett, 2015,15(11)7616. doi: 10.1021/acs.nanolett.5b03446
Jiang P, Liu Q, Liang Y. A Cost-Effective 3D Hydrogen Evolution Cathode with High Catalytic Activity:FeP Nanowire Array as the Active Phase[J]. Angew Chem Int Ed, 2014,53(47):12855-12859. doi: 10.1002/anie.201406848
Tang C, Gan L, Zhang R. Ternary FexCo1-xP Nanowire Array as a Robust Hydrogen Evolution Reaction Electrocatalyst with Pt-like Activity:Experimental and Theoretical Insight[J]. Nano Lett, 2016(10):6617-6621.
Guan B Y, Yu X Y, Wu H B. Complex Nanostructures from Materials Based on Metal-Organic Frameworks for Electrochemical Energy Storage and Conversion[J]. Adv Mater, 2017,29(47)1703614. doi: 10.1002/adma.201703614
Li D, Yang D, Yang X. Double-Helix Structure in Carrageenan-Metal Hydrogels:A General Approach to Porous Metal Sulfides/Carbon Aerogels with Excellent Sodium-Ion Storage[J]. Angew Chem Int Ed, 2016,55:15925-15928. doi: 10.1002/anie.201610301
Chen Y, Xu S, Li Y. FeS2 Nanoparticles Embedded in Reduced Graphene Oxide Toward Robust, High-Performance Electrocatalysts[J]. Adv Energy Mater, 2017,7(19)1700482. doi: 10.1002/aenm.201700482
Zhang J, Wu J, Guo H. Unveiling Active Sites for the Hydrogen Evolution Reaction on Monolayer MoS2[J]. Adv Mater, 2017,29(42)1701955. doi: 10.1002/adma.201701955
Jiang J, Gao M, Sheng W. Hollow Chevrel-Phase NiMo3S4 for Hydrogen Evolution in Alkaline Electrolytes[J]. Angew Chem, 2016,55(49):15240-15245. doi: 10.1002/anie.v55.49
Guo Y, Gan L, Shang C. A Cake-Style CoS2@MoS2/RGO Hybrid Catalyst for Efficient Hydrogen Evolution[J]. Adv Funct Mater, 2017,27(5)1602699. doi: 10.1002/adfm.v27.5
Wu Y, Liu Y, Li G D. Efficient Electrocatalysis of Overall Water Splitting by Ultrasmall NixCo3-xS4, Coupled Ni3S2, Nanosheet Arrays[J]. Nano Energy, 2017,35:161-170. doi: 10.1016/j.nanoen.2017.03.024
Wu C, Zhang Y, Dong D. Co9S8 Nanoparticles Anchored on Nitrogen and Sulfur Dual-Doped Carbon Nanosheets as Highly Efficient Bifunctional Electrocatalyst for Oxygen Evolution and Reduction Reactions[J]. Nanoscale, 2017,9(34):12432-12440. doi: 10.1039/C7NR03950F
Zhu X, Liu M, Liu Y. Carbon-Coated Hollow Mesoporous FeP Microcubes:An Efficient and Stable Electrocatalyst for Hydrogen Evolution[J]. J Mater Chem A, 2016,4(23):8974-8977. doi: 10.1039/C6TA01923D
Wu C, Yang Y, Dong D. In Situ Coupling of CoP Polyhedrons and Carbon Nanotubes as Highly Efficient Hydrogen Evolution Reaction Electrocatalyst[J]. Small, 2017,13(15)1602873. doi: 10.1002/smll.v13.15
Wang X, KolenKo Y V, Bao X Q. One-Step Synthesis of Self-Supported Nickel Phosphide Nanosheet Array Cathodes for Efficient Electrocatalytic Hydrogen Generation[J]. Angew Chem, 2015,54(28):8188-8192. doi: 10.1002/anie.201502577
Gong Z, Wang G, Yang L. Highly Active and Stable Catalysts of Phytic Acid-Derivative Transition Metal Phosphides for Full Water Splitting[J]. J Am Chem Soc, 2016,138(44)14686. doi: 10.1021/jacs.6b08491
Liang H, Gandi A N, Anjum D H. Plasma-Assisted Synthesis of NiCoP for Efficient Overall Water Splitting[J]. Nano Lett, 2016,16(12):7718-7725. doi: 10.1021/acs.nanolett.6b03803
Zhengyu Zhou , Huiqin Yao , Youlin Wu , Teng Li , Noritatsu Tsubaki , Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010
Yongjian Zhang , Fangling Gao , Hong Yan , Keyin Ye . Electrochemical Transformation of Organosulfur Compounds. University Chemistry, 2025, 40(5): 311-317. doi: 10.12461/PKU.DXHX202407035
Qiangqiang SUN , Pengcheng ZHAO , Ruoyu WU , Baoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454
Bing WEI , Jianfan ZHANG , Zhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201
Haodong JIN , Qingqing LIU , Chaoyang SHI , Danyang WEI , Jie YU , Xuhui XU , Mingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048
Kai CHEN , Fengshun WU , Shun XIAO , Jinbao ZHANG , Lihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350
Yongwei ZHANG , Chuang ZHU , Wenbin WU , Yongyong MA , Heng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386
Zihan Lin , Wanzhen Lin , Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089
Xi YANG , Chunxiang CHANG , Yingpeng XIE , Yang LI , Yuhui CHEN , Borao WANG , Ludong YI , Zhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371
Cen Zhou , Biqiong Hong , Yiting Chen . Application of Electrochemical Techniques in Supramolecular Chemistry. University Chemistry, 2025, 40(3): 308-317. doi: 10.12461/PKU.DXHX202406086
Yongming Zhu , Huili Hu , Yuanchun Yu , Xudong Li , Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086
Linbao Zhang , Weisi Guo , Shuwen Wang , Ran Song , Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009
Shuhui Li , Rongxiuyuan Huang , Yingming Pan . Electrochemical Synthesis of 2,5-Diphenyl-1,3,4-Oxadiazole: A Recommended Comprehensive Organic Chemistry Experiment. University Chemistry, 2025, 40(5): 357-365. doi: 10.12461/PKU.DXHX202407028
Hongyi LI , Aimin WU , Liuyang ZHAO , Xinpeng LIU , Fengqin CHEN , Aikui LI , Hao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480
Jianfeng Yan , Yating Xiao , Xin Zuo , Caixia Lin , Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005
Yifei Cheng , Jiahui Yang , Wei Shao , Wanqun Zhang , Wanqun Hu , Weiwei Li , Kaiping Yang . Learning Goes Beyond the Written Word: Practical Insights from the “Leaf Electroplating” Popular Science Experiment. University Chemistry, 2024, 39(9): 319-327. doi: 10.3866/PKU.DXHX202310033
Kuaibing Wang , Honglin Zhang , Wenjie Lu , Weihua Zhang . Experimental Design and Practice for Recycling and Nickel Content Detection from Waste Nickel-Metal Hydride Batteries. University Chemistry, 2024, 39(11): 335-341. doi: 10.12461/PKU.DXHX202403084
Kuaibing Wang , Feifei Mao , Weihua Zhang , Bo Lv . Design and Practice of a Comprehensive Teaching Experiment for Preparing Biomass Carbon Dots from Rice Husk. University Chemistry, 2025, 40(5): 342-350. doi: 10.12461/PKU.DXHX202407042
Zeqiu Chen , Limiao Cai , Jie Guan , Zhanyang Li , Hao Wang , Yaoguang Guo , Xingtao Xu , Likun Pan . 电容去离子提锂技术中电极材料的研究进展. Acta Physico-Chimica Sinica, 2025, 41(8): 100089-. doi: 10.1016/j.actphy.2025.100089
Xiaofeng Zhu , Bingbing Xiao , Jiaxin Su , Shuai Wang , Qingran Zhang , Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005
(a)Polarization curves; (b)Tafel plots; (c)Electrochemical cyclic voltammogram of CoS2@MoS2/RGO at different scanning rates; (d)the Cdl of different materials obtained at 0.15 V versus RHE
(a)Schematic illustration of the sythetic route for NiCoP nanostructure on Ni foam; (b)PXRD patterns of NiCo.OH and the converted NiCoP. The asterisks mark the diffraction peaks from Ni foam; (c)SEM image of NiCo-OH; (d)SEM images; (e)corresponding EDS elemental maps of the NiCoP[38]