Citation: YU Peng, LI Jinghong. Metal Sulfide(Phosphide) for Electrocatalytic Hydrogen Evolution Reaction[J]. Chinese Journal of Applied Chemistry, ;2018, 35(9): 1093-1101. doi: 10.11944/j.issn.1000-0518.2018.09.180180 shu

Metal Sulfide(Phosphide) for Electrocatalytic Hydrogen Evolution Reaction

  • Corresponding author: LI Jinghong, jhli@mail.tsinghua.edu.cn
  • Received Date: 16 May 2018
    Revised Date: 17 May 2018
    Accepted Date: 23 May 2018

    Fund Project: the National Natural Science Foundation of China 51572139Supported by the National Natural Science Foundation of China(No.51572139), National Basic Research Program of China(No.2013CB934004)National Basic Research Program of China 2013CB934004

Figures(10)

  • Water Splitting is an important method for hydrogen production in high purity and large quantities. Thus, developing high-performance, low-cost catalysts for hydrogen evolution reaction (HER) is of great importance. In this review, we systematically summarize the synthetic method for metal sulfide/phosphide-based catalysts as non-precious metal catalysts for HER reaction, and the method for enhancing the HER catalytic activity through constructing metal sulfide/phosphide with unique structure, which can provide guidance for developing new type HER catalysts with high catalytic activity.
  • 加载中
    1. [1]

      Borup R, Meyers J, Pivovar B. Scientific Aspects of Polymer Electrolyte Fuel Cell Durability and Degradation[J]. Chem Rev, 2007,107(10):3904-3051. doi: 10.1021/cr050182l

    2. [2]

      Zheng Y, Jiao Y, Jaroniec M. Advancing the Electrochemistry of the Hydrogen-Evolution Reaction Through Combining Experiment and Theory[J]. Angew Chem, 2015,54(1):52-65. doi: 10.1002/anie.201407031

    3. [3]

      Wang J, Xu F, Jin H. Non-Noble Metal-based Carbon Composites in Hydrogen Evolution Reaction:Fundamentals to Applications[J]. Adv Mater, 2017,29(14)1605838. doi: 10.1002/adma.v29.14

    4. [4]

      Anantharaj S, Ede S R, Sakthikumar K. Recent Trends and Perspectives in Electrochemical Water Splitting with an Emphasis to Sulphide, Selenide and Phosphide Catalysts of Fe, Co and Ni:A Review[J]. ACS Catal, 2016,6(12)1605838.  

    5. [5]

      You B, Sun Y. Chalcogenide and Phosphide Soli-State Electrocatalysts for Hydrogen Generation[J]. ChemPlusChem, 2016,81(10):1045-1055. doi: 10.1002/cplu.201600029

    6. [6]

      ZHANG Pan, ZHOU Kui, CHAEMXHUEN Somboon. Progress of Metal Oxide and Metal-Organic Frame Work Composite Materials[J]. Chinese J Appl Chem, 2018,35(4):369-380.  

    7. [7]

      Shi Z, Nie K, Shao Z J. Phosphorus-Mo2C@carbon Nanowires Toward Efficient Electrochemical Hydrogen Evolution:Composition, Structural and Electronic Regulation[J]. Energy Environ Sci, 2017,10(85):1819-1826.  

    8. [8]

      Qu K, Zheng Y, Zhang X. Promotion of Electrocatalytic Hydrogen Evolution Reaction on Nitrogen-Doped Carbon Nanosheets with Secondary Heteroatoms[J]. ACS Nano, 2017,11(7):7293-7300. doi: 10.1021/acsnano.7b03290

    9. [9]

      Zheng Y, Jiao Y, Li L H. Toward Design of Synergistically Active Carbon-Based Catalysts for Electrocatalytic Hydrogen Evolution[J]. ACS Nano, 2014,8(5):5290-5296. doi: 10.1021/nn501434a

    10. [10]

      Zheng Y, Jiao Y, Zhu Y. Hydrogen Evolution by a Metal-Free Electrocatalyst[J]. Nat Commun, 2014,5(4)3783.  

    11. [11]

      Zou X, Huang X, Goswami A. Cobalt-Embedded Nitrogen-Rich Carbon Nanotubes Efficiently Catalyze Hydrogen Evolution Reaction at All pH Values[J]. Angew Chem, 2014,53(17):4372-4376. doi: 10.1002/anie.201311111

    12. [12]

      Chen W F, Wang C H, Sasaki K. Highly Active and Durable Nanostructured Molybdenum Carbide Electrocatalysts for Hydrogen Production[J]. Energy Environ Sci, 2013,6(3):943-951. doi: 10.1039/c2ee23891h

    13. [13]

      Youn D H, Han S, Kim J Y. Highly Active and Stable Hydrogen Evolution Electrocatalysts Based on Molybdenum Compounds on Carbon Nanotube-Graphene Hybrid Support[J]. ACS Nano, 2014,8(5):5164-5173. doi: 10.1021/nn5012144

    14. [14]

      Zhao Y, Kamiya K, Hashimoto K. Hydrogen Evolution by Tungsten Carbonitride Nanoelectrocatalysts Synthesized by the Formation of a Tungsten Acid/Polymer Hybrid in Situ[J]. Angew Chem Int Ed, 2013,52(51):13638-13641. doi: 10.1002/anie.201307527

    15. [15]

      Chen W F, Sasaki K, Ma C. Hydrogen-Evolution Catalysts Based on Non-Noble Metal Nickel-Molybdenum Nitride Nanosheets[J]. Angew Chem Int Ed, 2012,51(25):6131-6135. doi: 10.1002/anie.201200699

    16. [16]

      Cao B, Veith G M, Neuefeind J C. Mixed Close-Packed Cobalt Molybdenum Nitrides as Non-Noble Metal Electrocatalysts for the Hydrogen Evolution Reaction[J]. J Am Chem Soc, 2013,135(51):19186-19192. doi: 10.1021/ja4081056

    17. [17]

      Yan H, Xie Y, Jiao Y. Holey Reduced Graphene Oxide Coupled with an Mo2N-Mo2C Heterojunction for Efficient Hydrogen Evolution[J]. Adv Mater, 2018,30(2)1704156. doi: 10.1002/adma.v30.2

    18. [18]

      Wu A, Xie Y, Ma H. Integrating the Active OER and HER Components as the Heterostructures for the Efficient Overall Water Splitting[J]. Nano Energy, 2017,44:353-363.  

    19. [19]

      Zhou X, Jiang J, Ding T. Fast Colloidal Synthesis of Scalable Mo-rich Hierarchical Ultrathin MoSe(2-x) Nanosheets for High-Performance Hydrogen Evolution[J]. Nanoscale, 2014,6(19):11046-11051. doi: 10.1039/C4NR02716G

    20. [20]

      Saadi F H, Carim A I, Velazquez J M. Operando Synthesis of Macroporous Molybdenum Diselenide Films for Electrocatalysis of the Hydrogen-Evolution Reaction[J]. ACS Catal, 2015,4(9):2866-2873.  

    21. [21]

      Xin Y Y, Xiong W L. Mixed Metal Sulfides for Electrochemical Energy Storage and Conversion[J]. Adv Energy Mater, 2018,8(3)1701592. doi: 10.1002/aenm.v8.3

    22. [22]

      Zhang Y, Zhou Q, Zhu J. Nanostructured Metal Chalcogenides for Energy Storage and Electrocatalysis[J]. Adv Funct Mater, 2017,27(35)1702317. doi: 10.1002/adfm.v27.35

    23. [23]

      Zou X, Zhang Y. Noble Metal-Free Hydrogen Evolution Catalysts for Water Splitting[J]. Chem Soc Rev, 2015,44(15):5148-5180. doi: 10.1039/C4CS00448E

    24. [24]

      Liu Y, Li Y, Kang H. Design, Synthesis, and Energy-Related Applications of Metal Sulfides[J]. Mater Horizons, 2016,3(5):402-421. doi: 10.1039/C6MH00075D

    25. [25]

      Yang H, Zhang Y, Hu F. Urchin-like CoP Nanocrystals as Hydrogen Evolution Reaction and Oxygen Reduction Reaction Dual-Electrocatalyst with Superior Stability[J]. Nano Lett, 2015,15(11)7616. doi: 10.1021/acs.nanolett.5b03446

    26. [26]

      Jiang P, Liu Q, Liang Y. A Cost-Effective 3D Hydrogen Evolution Cathode with High Catalytic Activity:FeP Nanowire Array as the Active Phase[J]. Angew Chem Int Ed, 2014,53(47):12855-12859. doi: 10.1002/anie.201406848

    27. [27]

      Tang C, Gan L, Zhang R. Ternary FexCo1-xP Nanowire Array as a Robust Hydrogen Evolution Reaction Electrocatalyst with Pt-like Activity:Experimental and Theoretical Insight[J]. Nano Lett, 2016(10):6617-6621.  

    28. [28]

      Guan B Y, Yu X Y, Wu H B. Complex Nanostructures from Materials Based on Metal-Organic Frameworks for Electrochemical Energy Storage and Conversion[J]. Adv Mater, 2017,29(47)1703614. doi: 10.1002/adma.201703614

    29. [29]

      Li D, Yang D, Yang X. Double-Helix Structure in Carrageenan-Metal Hydrogels:A General Approach to Porous Metal Sulfides/Carbon Aerogels with Excellent Sodium-Ion Storage[J]. Angew Chem Int Ed, 2016,55:15925-15928. doi: 10.1002/anie.201610301

    30. [30]

      Chen Y, Xu S, Li Y. FeS2 Nanoparticles Embedded in Reduced Graphene Oxide Toward Robust, High-Performance Electrocatalysts[J]. Adv Energy Mater, 2017,7(19)1700482. doi: 10.1002/aenm.201700482

    31. [31]

      Zhang J, Wu J, Guo H. Unveiling Active Sites for the Hydrogen Evolution Reaction on Monolayer MoS2[J]. Adv Mater, 2017,29(42)1701955. doi: 10.1002/adma.201701955

    32. [32]

      Jiang J, Gao M, Sheng W. Hollow Chevrel-Phase NiMo3S4 for Hydrogen Evolution in Alkaline Electrolytes[J]. Angew Chem, 2016,55(49):15240-15245. doi: 10.1002/anie.v55.49

    33. [33]

      Guo Y, Gan L, Shang C. A Cake-Style CoS2@MoS2/RGO Hybrid Catalyst for Efficient Hydrogen Evolution[J]. Adv Funct Mater, 2017,27(5)1602699. doi: 10.1002/adfm.v27.5

    34. [34]

      Wu Y, Liu Y, Li G D. Efficient Electrocatalysis of Overall Water Splitting by Ultrasmall NixCo3-xS4, Coupled Ni3S2, Nanosheet Arrays[J]. Nano Energy, 2017,35:161-170. doi: 10.1016/j.nanoen.2017.03.024

    35. [35]

      Wu C, Zhang Y, Dong D. Co9S8 Nanoparticles Anchored on Nitrogen and Sulfur Dual-Doped Carbon Nanosheets as Highly Efficient Bifunctional Electrocatalyst for Oxygen Evolution and Reduction Reactions[J]. Nanoscale, 2017,9(34):12432-12440. doi: 10.1039/C7NR03950F

    36. [36]

      Zhu X, Liu M, Liu Y. Carbon-Coated Hollow Mesoporous FeP Microcubes:An Efficient and Stable Electrocatalyst for Hydrogen Evolution[J]. J Mater Chem A, 2016,4(23):8974-8977. doi: 10.1039/C6TA01923D

    37. [37]

      Wu C, Yang Y, Dong D. In Situ Coupling of CoP Polyhedrons and Carbon Nanotubes as Highly Efficient Hydrogen Evolution Reaction Electrocatalyst[J]. Small, 2017,13(15)1602873. doi: 10.1002/smll.v13.15

    38. [38]

      Wang X, KolenKo Y V, Bao X Q. One-Step Synthesis of Self-Supported Nickel Phosphide Nanosheet Array Cathodes for Efficient Electrocatalytic Hydrogen Generation[J]. Angew Chem, 2015,54(28):8188-8192. doi: 10.1002/anie.201502577

    39. [39]

      Gong Z, Wang G, Yang L. Highly Active and Stable Catalysts of Phytic Acid-Derivative Transition Metal Phosphides for Full Water Splitting[J]. J Am Chem Soc, 2016,138(44)14686. doi: 10.1021/jacs.6b08491

    40. [40]

      Liang H, Gandi A N, Anjum D H. Plasma-Assisted Synthesis of NiCoP for Efficient Overall Water Splitting[J]. Nano Lett, 2016,16(12):7718-7725. doi: 10.1021/acs.nanolett.6b03803

  • 加载中
    1. [1]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    2. [2]

      Yongjian Zhang Fangling Gao Hong Yan Keyin Ye . Electrochemical Transformation of Organosulfur Compounds. University Chemistry, 2025, 40(5): 311-317. doi: 10.12461/PKU.DXHX202407035

    3. [3]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    4. [4]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    5. [5]

      Haodong JINQingqing LIUChaoyang SHIDanyang WEIJie YUXuhui XUMingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048

    6. [6]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    7. [7]

      Yongwei ZHANGChuang ZHUWenbin WUYongyong MAHeng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386

    8. [8]

      Zihan Lin Wanzhen Lin Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089

    9. [9]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    10. [10]

      Cen Zhou Biqiong Hong Yiting Chen . Application of Electrochemical Techniques in Supramolecular Chemistry. University Chemistry, 2025, 40(3): 308-317. doi: 10.12461/PKU.DXHX202406086

    11. [11]

      Yongming Zhu Huili Hu Yuanchun Yu Xudong Li Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086

    12. [12]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

    13. [13]

      Shuhui Li Rongxiuyuan Huang Yingming Pan . Electrochemical Synthesis of 2,5-Diphenyl-1,3,4-Oxadiazole: A Recommended Comprehensive Organic Chemistry Experiment. University Chemistry, 2025, 40(5): 357-365. doi: 10.12461/PKU.DXHX202407028

    14. [14]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    15. [15]

      Jianfeng Yan Yating Xiao Xin Zuo Caixia Lin Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005

    16. [16]

      Yifei Cheng Jiahui Yang Wei Shao Wanqun Zhang Wanqun Hu Weiwei Li Kaiping Yang . Learning Goes Beyond the Written Word: Practical Insights from the “Leaf Electroplating” Popular Science Experiment. University Chemistry, 2024, 39(9): 319-327. doi: 10.3866/PKU.DXHX202310033

    17. [17]

      Kuaibing Wang Honglin Zhang Wenjie Lu Weihua Zhang . Experimental Design and Practice for Recycling and Nickel Content Detection from Waste Nickel-Metal Hydride Batteries. University Chemistry, 2024, 39(11): 335-341. doi: 10.12461/PKU.DXHX202403084

    18. [18]

      Kuaibing Wang Feifei Mao Weihua Zhang Bo Lv . Design and Practice of a Comprehensive Teaching Experiment for Preparing Biomass Carbon Dots from Rice Husk. University Chemistry, 2025, 40(5): 342-350. doi: 10.12461/PKU.DXHX202407042

    19. [19]

      Zeqiu Chen Limiao Cai Jie Guan Zhanyang Li Hao Wang Yaoguang Guo Xingtao Xu Likun Pan . 电容去离子提锂技术中电极材料的研究进展. Acta Physico-Chimica Sinica, 2025, 41(8): 100089-. doi: 10.1016/j.actphy.2025.100089

    20. [20]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

Metrics
  • PDF Downloads(7)
  • Abstract views(989)
  • HTML views(159)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return