Citation: ZHU Yuezhou, ZHANG Yuejiao, LI Jianfeng, REN Bin, TIAN Zhongqun. Surface-Enhanced Raman Spectroscopy: Applications and Perspectives[J]. Chinese Journal of Applied Chemistry, ;2018, 35(9): 984-992. doi: 10.11944/j.issn.1000-0518.2018.09.180172 shu

Surface-Enhanced Raman Spectroscopy: Applications and Perspectives

  • Corresponding author: LI Jianfeng, Li@xmu.edu.cn TIAN Zhongqun, zqtian@xmu.edu.cn
  • Received Date: 14 May 2018
    Revised Date: 15 May 2018
    Accepted Date: 22 May 2018

    Fund Project: the National Natural Science Foundation of China 21533006the National Natural Science Foundation of China 21775127the National Natural Science Foundation of China 21522508Supported bu the National Natural Science Foundation of China(No.21533006, No.21522508, No.21775127)

Figures(4)

  • Surface-enhanced Raman spectroscopy (SERS) is a fingerprint spectroscopic technique with ultra-high sensitivity. It has been widely used in surface science, material science, biomedicine, drug analysis, food safety inspection, and pollutant detection, as a promising technique for trace analysis. In this paper, we comprehensively reviewed the development and applications of SERS and related techniques, including tip-enhanced Raman spectroscopy (TERS), shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS), and discussed its research frontiers and development directions in the future.
  • 加载中
    1. [1]

      Raman C V, Krishnan K S. A New Type of Secondary Radiation[J]. Nature, 1928,121:501-502.  

    2. [2]

      Fleischmann M, Hendra P J, McQuillan A J. Raman Spectra of Pyridine Adsorbed at a Silver Electrode[J]. Chem Phys Lett, 1974,26(2):163-166.  

    3. [3]

      Jeanmaire D L, Van Duyne R P. Surface Raman Spectroelectrochemistry:Part I. Heterocyclic, Aromatic, and Aliphatic Amines Adsorbed on the Anodized Silver Electrode[J]. J Electroanal Chem Interfacial Electrochem, 1977,84(1):1-20. doi: 10.1016/S0022-0728(77)80224-6

    4. [4]

      Albrecht M G, Creighton J A. Anomalously Intense Raman Spectra of Pyridine at a Silver Electrode[J]. J Am Chem Soc, 1977,99(15):5215-5217. doi: 10.1021/ja00457a071

    5. [5]

      Ding S Y, You E M, Tian Z Q. Electromagnetic Theories of Surface-Enhanced Raman Spectroscopy[J]. Chem Soc Rev, 2017,46(13):4042-4076. doi: 10.1039/C7CS00238F

    6. [6]

      Bilmes S A, Rubim J C, Otto A. SERS from Pyridine Adsorbed on Electrodispersed Platinum Electrodes[J]. Chem Phys Lett, 1989,159(1):89-96.  

    7. [7]

      Bryant M A, Joa S L, Pemberton J E. Raman Scattering from Monolayer Films of Thiophenol and 4-Mercaptopyridine at Platinum Surfaces[J]. Langmuir, 1992,8(3):753-756. doi: 10.1021/la00039a002

    8. [8]

      Maeda T, Sasaki Y, Horie C. Raman Study of Electrochemical Reactions of a Pt Electrode in H2SO4 Solution[J]. J Electron Spectrosc Relat Phenom, 1993,64(1):381-389.  

    9. [9]

      Pettinger B, Tiedemann U. Surface Raman Spectroscopy at Pt Electrodes[J]. J Electroanal Chem Interfacial Electrochem, 1987,228(1):219-228.  

    10. [10]

      Shannon C, Campion A. Unenhanced Raman Scattering as an in situ Probe of the Electrode-Electrolyte Interface:4-Cyanopyridine Adsorbed on a Rhodium Electrode[J]. J Phys Chem, 1988,92(6):1385-1387. doi: 10.1021/j100317a002

    11. [11]

      Yamada H, Yamamoto Y. Surface Enhanced Raman Scattering(SERS) of Chemisorbed Species on Various Kinds of Metals and Semiconductors[J]. Surf Sci, 1983,134(1):71-90. doi: 10.1016/0039-6028(83)90312-6

    12. [12]

      Tian Z Q, Ren B, Wu D Y. Surface-Enhanced Raman Scattering:From Noble to Transition Metals and from Rough Surfaces to Ordered Nanostructures[J]. J Phys Chem B, 2002,106(37):9463-9483. doi: 10.1021/jp0257449

    13. [13]

      Cao P G, Yao J L, Ren B. Surface-Enhanced Raman Scattering from Bare Fe Electrode Surfaces[J]. Chem Phys Lett, 2000,316(1):1-5.  

    14. [14]

      Gao J S, Tian Z Q. Surface Raman Spectroscopic Studies of Ruthenium, Rhodium and Palladium Electrodes Deposited on Glassy Carbon Substrates[J]. Spectrochim Acta, Part A, 1997,53(10):1595-1600. doi: 10.1016/S1386-1425(96)01855-0

    15. [15]

      Ren B, Lin X F, Yan J W. Electrochemically Roughened Rhodium Electrode as a Substrate for Surface-Enhanced Raman Spectroscopy[J]. J Phys Chem B, 2003,107(4):899-902. doi: 10.1021/jp026862z

    16. [16]

      Tian Z Q, Ren B, Mao B W. Extending Surface Raman Spectroscopy to Transition Metal Surfaces for Practical Applications.1.Vibrational Properties of Thiocyanate and Carbon Monoxide Adsorbed on Electrochemically Activated Platinum Surfaces[J]. J Phys Chem B, 1997,101(8):1338-1346. doi: 10.1021/jp962049q

    17. [17]

      Tian Z Q, Ren B. Adsorption and Reaction at Electrochemical Interfaces as Probed by Surface-Enhanced Raman Spectroscopy[J]. Annu Rev Phys Chem, 2004,55(1):197-229. doi: 10.1146/annurev.physchem.54.011002.103833

    18. [18]

      Yao J L, Tang J, Wu D Y. Surface Enhanced Raman Scattering from Transition Metal Nano-Wire Array and the Theoretical Consideration[J]. Surf Sci, 2002,514(1):108-116.  

    19. [19]

      REN Bin, TIAN Zhongqun. The Progress in Surface-enhanced Raman Spectroscopy[J]. Mod Instrum Med Treat, 2004,10(5):1-8.  

    20. [20]

      Kelly K L, Coronado E, Zhao L L. The Optical Properties of Metal Nanoparticles:The Influence of Size, Shape, and Dielectric Environment[J]. J Phys Chem B, 2003,107(3):668-677. doi: 10.1021/jp026731y

    21. [21]

      Tian Z Q, Yang Z L, Ren B. Surface-Enhanced Raman Scattering from Transition Metals with Special Surface Morphology and Nanoparticle Shape[J]. Faraday Discuss, 2006,132:159-170. doi: 10.1039/B507773G

    22. [22]

      McLellan J M, Xiong Y J, Hu M. Surface-Enhanced Raman Scattering of 4-Mercaptopyridine on Thin Films of Nanoscale Pd Cubes, Boxes, and Cages[J]. Chem Phys Lett, 2006,417(1):230-234.  

    23. [23]

      Van Duyne R P, Haushalter J P. Surface-Enhanced Raman Spectroscopy of Adsorbates on Semiconductor Electrode Surfaces:Tris(Bipyridine) Ruthenium(Ⅱ) Adsorbed on Silver-Modified n-Gallium Arsenide(100)[J]. J Phys Chem, 1983,87(16):2999-3003. doi: 10.1021/j100239a004

    24. [24]

      Van Duyne R P, Haushalter J P, Janik-Czachor M. Surface-Enhanced Resonance Raman Spectroscopy of Adsorbates on Semiconductor Electrode Surfaces.2.In Situ Studies of Transition Metal(Iron and Ruthenium) Complexes on Silver/Gallium Arsenide and Silver/Silicon[J]. J Phys Chem, 1985,89(19):4055-4061. doi: 10.1021/j100265a026

    25. [25]

      Fleischmann M, Tian Z Q, Li L J. Raman Spectroscopy of Adsorbates on Thin Film Electrodes Deposited on Silver Substrates[J]. J Electroanal Chem Interfacial Electrochem, 1987,217(2):397-410. doi: 10.1016/0022-0728(87)80231-0

    26. [26]

      Leung L W H, Weaver M J. Extending Surface-Enhanced Raman Spectroscopy to Transition-Metal Surfaces:Carbon Monoxide Adsorption and Electrooxidation on Platinum-and Palladium-Coated Gold Electrodes[J]. J Am Chem Soc, 1987,109(17):5113-5119. doi: 10.1021/ja00251a011

    27. [27]

      Leung L W H, Weaver M J. Adsorption and Electrooxidation of Carbon Monoxide on Rhodium-and Ruthenium-Coated Gold Electrodes as Probed by Surface-Enhanced Raman Spectroscopy[J]. Langmuir, 1988,4(5):1076-1083. doi: 10.1021/la00083a002

    28. [28]

      Leung L W H, Weaver M J. Extending the Metal Interface Generality of Surface-Enhanced Raman Spectroscopy:Underpotential Deposited Layers of Mercury, Thallium, and Lead on Gold Electrodes[J]. J Electroanal Chem Interfacial Electrochem, 1987,217(2):367-384. doi: 10.1016/0022-0728(87)80229-2

    29. [29]

      Mengoli G, Musiani M M, Fleischman M. Enhanced Raman Scattering from Iron Electrodes[J]. Electrochim Acta, 1987,32(8):1239-1245. doi: 10.1016/0013-4686(87)80042-7

    30. [30]

      Park S, Yang P, Corredor P. Transition Metal-Coated Nanoparticle Films:Vibrational Characterization with Surface-Enhanced Raman Scattering[J]. J Am Chem Soc, 2002,124(11):2428-2429. doi: 10.1021/ja017406b

    31. [31]

      Hu J W, Zhang Y, Li J F. Synthesis of Au@Pd Core-Shell Nanoparticles with Controllable Size and Their Application in Surface-Enhanced Raman Spectroscopy[J]. Chem Phys Lett, 2005,408(4):354-359.  

    32. [32]

      Lu L H, Sun G Y, Zhang H J. Fabrication of Core-Shell Au-Pt Nanoparticle Film and Its Potential Application as Catalysis and SERS Substrate[J]. J Mater Chem, 2004,14(6):1005-1009. doi: 10.1039/b314868h

    33. [33]

      Tian Z Q, Ren B, Li J F. Expanding Generality of Surface-Enhanced Raman Spectroscopy with Borrowing SERS Activity Strategy[J]. Chem Commun, 2007,34(34):3514-3534.  

    34. [34]

      Wessel J. Surface-Enhanced Optical Microscopy[J]. J Opt Soc Am B, 1985,2(9):1538-1541. doi: 10.1364/JOSAB.2.001538

    35. [35]

      Anderson M S. Locally Enhanced Raman Spectroscopy with an Atomic Force Microscope[J]. Appl Phys Lett, 2000,76(21):3130-3132. doi: 10.1063/1.126546

    36. [36]

      Hayazawa N, Inouye Y, Sekkat Z. Metallized Tip Amplification of Near-Field Raman Scattering[J]. Opt Commun, 2000,183(1):333-336.  

    37. [37]

      Pettinger B, Picardi G, Schuster R. Surface Enhanced Raman Spectroscopy:Towards Single Molecular Spectroscopy[J]. Electrochemistry, 2000,68(12):942-949.  

    38. [38]

      St ckle R M, Suh Y D, Deckert V. Nanoscale Chemical Analysis by Tip-Enhanced Raman Spectroscopy[J]. Chem Phys Lett, 2000,318(1):131-136.  

    39. [39]

      Li J F, Huang Y F, Ding Y. Shell-Isolated Nanoparticle-Enhanced Raman Spectroscopy[J]. Nature, 2010,464:392-395. doi: 10.1038/nature08907

    40. [40]

      Li J F, Zhang Y J, Ding S Y. Core-Shell Nanoparticle-Enhanced Raman Spectroscopy[J]. Chem Rev, 2017,117(7):5002-5069. doi: 10.1021/acs.chemrev.6b00596

    41. [41]

      REN Bin, WANG Xi. Tip-enhanced Raman Spectroscopy-Technique, Applications and Perspectives[J]. Chinese J Light Scatt, 2006,18(4):288-296. doi: 10.3969/j.issn.1004-5929.2006.04.001 

    42. [42]

      Zhang R, Zhang Y, Dong Z C. Chemical Mapping of a Single Molecule by Plasmon-Enhanced Raman Scattering[J]. Nature, 2013,498:82-86. doi: 10.1038/nature12151

    43. [43]

      Jiang S, Zhang Y, Zhang R. Distinguishing Adjacent Molecules on a Surface Using Plasmon-Enhanced Raman Scattering[J]. Nat Nanotechnol, 2015,10:865-869. doi: 10.1038/nnano.2015.170

    44. [44]

      Zhong J H, Jin X, Meng L Y. Probing the Electronic and Catalytic Properties of a Bimetallic Surface with 3 nm Resolution[J]. Nat Nanotechnol, 2016,12:132-136. doi: 10.1038/nnano.2016.241

    45. [45]

      Zeng Z C, Huang S C, Wu D Y. Electrochemical Tip-Enhanced Raman Spectroscopy[J]. J Am Chem Soc, 2015,137(37):11928-11931. doi: 10.1021/jacs.5b08143

    46. [46]

      Li C Y, Dong J C, Jin X. In Situ Monitoring of Electrooxidation Processes at Gold Single Crystal Surfaces Using Shell-Isolated Nanoparticle-Enhanced Raman Spectroscopy[J]. J Am Chem Soc, 2015,137(24):7648-7651. doi: 10.1021/jacs.5b04670

    47. [47]

      Zhang H, Wang C, Sun H L. In Situ Dynamic Tracking of Heterogeneous Nanocatalytic Processes by Shell-Isolated Nanoparticle-Enhanced Raman Spectroscopy[J]. Nat Commun, 2017,815447. doi: 10.1038/ncomms15447

    48. [48]

      Zhang H, Zhang X G, Wei J. Revealing the Role of Interfacial Properties on Catalytic Behaviors by in situ Surface-Enhanced Raman Spectroscopy[J]. J Am Chem Soc, 2017,139(30):10339-10346. doi: 10.1021/jacs.7b04011

    49. [49]

      Li J F, Anema J R, Wandlowski T. Dielectric Shell Isolated and Graphene Shell Isolated Nanoparticle Enhanced Raman Spectroscopies and Their Applications[J]. Chem Soc Rev, 2015,44(23):8399-8409. doi: 10.1039/C5CS00501A

    50. [50]

      Ding S Y, Yi J, Li J F. Nanostructure-Based Plasmon-Enhanced Raman Spectroscopy for Surface Analysis of Materials[J]. Nat Rev Mater, 2016,116021. doi: 10.1038/natrevmats.2016.21

    51. [51]

      Liu Y, Hu Y, Zhang J. Few-Layer Graphene-Encapsulated Metal Nanoparticles for Surface-Enhanced Raman Spectroscopy[J]. J Phys Chem C, 2014,118(17):8993-8998. doi: 10.1021/jp500751a

    52. [52]

      Huang Y P, Huang S C, Wang X J, et al. Shell-Isolated Tip-Enhanced Raman and Fluorescence Spectroscopy[J]. Angew Chem Int Ed, DOI: 10.1002/anie.201802892.

    53. [53]

      Xu J, Zhang Y J, Yin H. Shell-Isolated Nanoparticle-Enhanced Raman and Fluorescence Spectroscopies:Synthesis and Applications[J]. Adv Opt Mater, 2018,61701069. doi: 10.1002/adom.v6.4

    54. [54]

      Aroca R F, Ross D J, Domingo C. Surface-Enhanced Infrared Spectroscopy[J]. Appl Spectrosc, 2004,58(11):324A-338A. doi: 10.1366/0003702042475420

  • 加载中
    1. [1]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034

    2. [2]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    3. [3]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    4. [4]

      Ruiqin FengYe FanYun FangYongmei Xia . Strategy for Regulating Surface Protrusion of Gold Nanoflowers and Their Surface-Enhanced Raman Scattering. Acta Physico-Chimica Sinica, 2024, 40(4): 2304020-0. doi: 10.3866/PKU.WHXB202304020

    5. [5]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    6. [6]

      Yufan ZHAOJinglin YOUShixiang WANGGuopeng LIUXiang XIAYingfang XIEMeiqin SHENGFeiyan XUKai TANGLiming LU . Raman spectroscopic quantitative study of the melt microstructure in binary Li2O-GeO2 functional crystals. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1533-1544. doi: 10.11862/CJIC.20250063

    7. [7]

      Jingyi Chen Fu Liu Tiejun Zhu Kui Cheng . Practice of Integrating Ideological and Political Education into Raman Spectroscopy Analysis Experiment Course. University Chemistry, 2024, 39(2): 140-146. doi: 10.3866/PKU.DXHX202310111

    8. [8]

      Wei Peng Baoying Wen Huamin Li Yiru Wang Jianfeng Li . Exploration and Practice on Raman Scattering Spectroscopy Experimental Teaching. University Chemistry, 2024, 39(8): 230-240. doi: 10.3866/PKU.DXHX202312062

    9. [9]

      Zhaoyue Lü Zhehao Chen Yi Ni Duanbin Luo Xianfeng Hong . Multi-Level Teaching Design and Practice Exploration of Raman Spectroscopy Experiment. University Chemistry, 2024, 39(11): 304-312. doi: 10.12461/PKU.DXHX202402047

    10. [10]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    11. [11]

      Yue-Zhou ZhuKun WangShi-Sheng ZhengHong-Jia WangJin-Chao DongJian-Feng Li . Application and Development of Electrochemical Spectroscopy Methods. Acta Physico-Chimica Sinica, 2024, 40(3): 2304040-0. doi: 10.3866/PKU.WHXB202304040

    12. [12]

      Kaifu Zhang Shan Gao Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045

    13. [13]

      Xue WuYupeng LiuBingzhe WangLingyun LiZhenjian LiQingcheng WangQuansheng ChengGuichuan XingSongnan Qu . Rationally assembling different surface functionalized carbon dots for enhanced near-infrared tumor photothermal therapy. Acta Physico-Chimica Sinica, 2025, 41(9): 100109-0. doi: 10.1016/j.actphy.2025.100109

    14. [14]

      Tieping CAOYuejun LIDawei SUN . Surface plasmon resonance effect enhanced photocatalytic CO2 reduction performance of S-scheme Bi2S3/TiO2 heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 903-912. doi: 10.11862/CJIC.20240366

    15. [15]

      Yangrui XuYewei RenXinlin LiuHongping LiZiyang Lu . NH2-UIO-66 Based Hydrophobic Porous Liquid with High Mass Transfer and Affinity Surface for Enhancing CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(11): 2403032-0. doi: 10.3866/PKU.WHXB202403032

    16. [16]

      Heng ChenLonghui NieKai XuYiqiong YangCaihong Fang . Remarkable Photocatalytic H2O2 Production Efficiency over Ultrathin g-C3N4 Nanosheet with Large Surface Area and Enhanced Crystallinity by Two-Step Calcination. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-0. doi: 10.3866/PKU.WHXB202406019

    17. [17]

      Jing ZhangSu ZhangQiqi LiLinken JiYutong LiYukang RenXiaobei ZangNing CaoHan HuPeng LiangZhuangjun Fan . Integrating high surface area and electric conductivity in activated carbon by in situ formation of the less-defective carbon network during selective chemical etching. Acta Physico-Chimica Sinica, 2025, 41(10): 100114-0. doi: 10.1016/j.actphy.2025.100114

    18. [18]

      Jiangyuan QiuTao YuJunxin ChenWenxuan LiXiaoxuan Zhangjinsheng LiRui GuoZaiyin HuangXuanwen Liu . Modulate surface potential well depth of Bi12O17Cl2 by FeOOH in Bi12O17Cl2@FeOOH heterojunction to boost piezoelectric charge transfer and piezo-self-Fenton catalysis. Acta Physico-Chimica Sinica, 2026, 42(1): 100157-0. doi: 10.1016/j.actphy.2025.100157

    19. [19]

      Wenliang Wang Weina Wang Lixia Feng Nan Wei Sufan Wang Tian Sheng Tao Zhou . Proof and Interpretation of Severe Spectroscopic Selection Rules. University Chemistry, 2025, 40(3): 415-424. doi: 10.12461/PKU.DXHX202408063

    20. [20]

      Shi-Yu LuWenzhao DouJun ZhangLing WangChunjie WuHuan YiRong WangMeng Jin . Amorphous-Crystalline Interfaces Coupling of CrS/CoS2 Few-Layer Heterojunction with Optimized Crystallinity Boosted for Water-Splitting and Methanol-Assisted Energy-Saving Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(8): 2308024-0. doi: 10.3866/PKU.WHXB202308024

Metrics
  • PDF Downloads(50)
  • Abstract views(2616)
  • HTML views(681)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return