Progress on Microstructural Optimization and Controllable Preparation Technology for Lithium Ion Battery Electrodes
- Corresponding author: ZHANG Suojiang, sjzhang@ipe.ac.cn
Citation:
WU Xiangkun, ZHAN Qiushe, ZHANG Lan, ZHANG Suojiang. Progress on Microstructural Optimization and Controllable Preparation Technology for Lithium Ion Battery Electrodes[J]. Chinese Journal of Applied Chemistry,
;2018, 35(9): 1076-1092.
doi:
10.11944/j.issn.1000-0518.2018.09.180165
Bitsch B, Gallasch T, Schroeder M. Capillary Suspensions as Beneficial Formulation Concept for High Energy Density Li-Ion Battery Electrodes[J]. J Power Sources, 2016,328:114-123. doi: 10.1016/j.jpowsour.2016.07.102
Lu W, Jansen A, Dees D. High-Energy Electrode Investigation for Plug-In Hybrid Electric Vehicles[J]. J Power Sources, 2011,196(3):1537-1540. doi: 10.1016/j.jpowsour.2010.08.117
Singh M, Kaiser J, Hahn H. Thick Electrodes for High Energy Lithium Ion Batteries[J]. J Electrochem Soc, 2015,162(7):A1196-A1201. doi: 10.1149/2.0401507jes
Singh M, Kaiser J, Hahn H. A Systematic Study of Thick Electrodes for High Energy Lithium Ion Batteries[J]. J Electroanal Chem, 2016,782:245-249. doi: 10.1016/j.jelechem.2016.10.040
Feng K, Li M, Liu W. Silicon-Based Anodes for Lithium-Ion Batteries:From Fundamentals to Practical Applications[J]. Small, 2018,14(8)1702737. doi: 10.1002/smll.201702737
Smekens J, Gopalakrishnan R, Van den Steen N. Influence of Electrode Density on the Performance of Li-Ion Batteries:Experimental and Simulation Results[J]. Energies, 2016,9(2)104. doi: 10.3390/en9020104
Liu H, Foster J M, Gully A. Three-Dimensional Investigation of Cycling-Induced Microstructural Changes in Lithium-Ion Battery Cathodes Using Focused Ion Beam/Scanning Electron Microscopy[J]. J Power Sources, 2016,306:300-308. doi: 10.1016/j.jpowsour.2015.11.108
Ender M, Joos J, Carraro T. Three-Dimensional Reconstruction of a Composite Cathode for Lithium-Ion Cells[J]. Electrochem Commun, 2011,13(2):166-168. doi: 10.1016/j.elecom.2010.12.004
Liu Z, Verhallen T W, Singh D P. Relating the 3D Electrode Morphology to Li-Ion Battery Performance; A Case for LiFePO4[J]. J Power Sources, 2016,324:358-367. doi: 10.1016/j.jpowsour.2016.05.097
Liu Z, Chen-Wiegart Y K, Wang J. Three-Phase 3D Reconstruction of a LiCoO2 Cathode via FIB-SEM Tomography[J]. Microsc Microanal, 2016,22(1):140-148. doi: 10.1017/S1431927615015640
Hutzenlaub T, Thiele S, Paust N. Three-Dimensional Electrochemical Li-Ion Battery Modelling Featuring a Focused Ion-Beam/Scanning Electron Microscopy Based Three-Phase Reconstruction of a LiCoO2 Cathode[J]. Electrochim Acta, 2014,115:131-139. doi: 10.1016/j.electacta.2013.10.103
Hutzenlaub T, Asthana A, Becker J. FIB/SEM-based Calculation of Tortuosity in a Porous LiCoO2 Cathode for a Li-Ion Battery[J]. Electrochem Commun, 2013,27:77-80. doi: 10.1016/j.elecom.2012.11.006
Moroni R, B rner M, Zielke L. Multi-Scale Correlative Tomography of a Li-Ion Battery Composite Cathode[J]. Sci Rep-UK, 2016,610309.
Ebner M, Geldmacher F, Marone F. X-Ray Tomography of Porous, Transition Metal Oxide Based Lithium Ion Battery Electrodes[J]. Adv Energy Mater, 2013,3(7):845-850. doi: 10.1002/aenm.v3.7
Chen-Wiegart Y K, Liu Z, Faber K T. 3D Analysis of a LiCoO2-Li(Ni1/3Mn1/3Co1/3)O2 Li-Ion Battery Positive Electrode Using X-Ray Nano-Tomography[J]. Electrochem Commun, 2013,28:127-130. doi: 10.1016/j.elecom.2012.12.021
Babu S K, Mohamed A I, Whitacre J F. Multiple Imaging Mode X-ray Computed Tomography for Distinguishing Active and Inactive Phases in Lithium-Ion Battery Cathodes[J]. J Power Sources, 2015,283:314-319. doi: 10.1016/j.jpowsour.2015.02.086
Cooper S J, Eastwood D S, Gelb J. Image Based Modelling of Microstructural Heterogeneity in LiFePO4 Electrodes for Li-Ion Batteries[J]. J Power Sources, 2014,247:1033-1039. doi: 10.1016/j.jpowsour.2013.04.156
Tariq F, Yufit V, Kishimoto M. Three-Dimensional High Resolution X-ray Imaging and Quantification of Lithium Ion Battery Mesocarbon Microbead Anodes[J]. J Power Sources, 2014,248:1014-1020. doi: 10.1016/j.jpowsour.2013.08.147
Nelson G J, Ausderau L J, Shin S Y. Transport-Geometry Interactions in Li-Ion Cathode Materials Imaged Using X-Ray Nanotomography[J]. J Electrochem Soc, 2016,164(7):A1412-A1424.
Kang H, Lim C, Li T. Geometric and Electrochemical Characteristics of LiNi1/3Mn1/3Co1/3O2 Electrode with Different Calendering Conditions[J]. Electrochim Acta, 2017,232:431-438. doi: 10.1016/j.electacta.2017.02.151
Zielke L, Hutzenlaub T, Wheeler D R. Three Phase Multiscale Modeling of a LiCoO2 Cathode:Combining the Advantages of FIB-SEM Imaging and X-Ray[J]. Adv Energy Mater, 2015,5(5)1401612. doi: 10.1002/aenm.201401612
Zielke L, Hutzenlaub T, Wheeler D R. A Combination of X-Ray Tomography and Carbon Binder Modeling:Reconstructing the Three Phases of LiCoO2 Li-Ion Battery Cathodes[J]. Adv Energy Mater, 2014,4(8)1301617. doi: 10.1002/aenm.201301617
Vierrath S, Zielke L, Moroni R. Morphology of Nanoporous Carbon-Binder Domains in Li-Ion Batteries-A FIB-SEM Study[J]. Electrochem Commun, 2015,60:176-179. doi: 10.1016/j.elecom.2015.09.010
Etiemble A, Besnard N, Bonnin A. Multiscale Morphological Characterization of Process Induced Heterogeneities in Blended Positive Electrodes for Lithium-Ion Batteries[J]. J Mater Sci, 2017,52(7):3576-3596. doi: 10.1007/s10853-016-0374-x
Doyle M, Fuller T F, Newman J. Modeling of Galvanostatic Charge and Discharge of the Lithium Polymer Insertion Cell[J]. J Electrochem Soc, 1993,140(6):1526-1533. doi: 10.1149/1.2221597
Yuan S, Jiang L, Yin C. A Transfer Function Type of Simplified Electrochemical Model with Modified Boundary Conditions and Pad Approximation for Li-Ion Battery:Part 2.Modeling and Parameter Estimation[J]. J Power Sources, 2017,352:258-271. doi: 10.1016/j.jpowsour.2017.03.061
Yuan S, Jiang L, Yin C. A Transfer Function Type of Simplified Electrochemical Model with Modified Boundary Conditions and Pad Approximation for Li-Ion Battery:Part 1.Lithium Concentration Estimation[J]. J Power Sources, 2017,352:245-257. doi: 10.1016/j.jpowsour.2017.03.060
Feinauer J, Brereton T, Spettl A. Stochastic 3D Modeling of the Microstructure of Lithium-Ion Battery Anodes via Gaussian Random Fields on the Sphere[J]. Comp Mater Sci, 2015,109:137-146. doi: 10.1016/j.commatsci.2015.06.025
HE Shaoyang, ZENG Jianbang, JIANG Fangming. Numerical Reconstruction and Characterization Analysis of Microstructure of Lithium-Ion Battery Graphite Anode[J]. J Inorg Mater, 2015,30(9):906-912.
WU Wei, JIANG Fangming, ZENG Jianbang. Reconstruction of LiCoO2 Cathode Microstructure and Prediction of Effective Transport Coefficients[J]. Acta Phys-Chim Sin, 2013(11):2361-2370. doi: 10.3866/PKU.WHXB201309032
Wu W, Jiang F. Simulated Annealing Reconstruction and Characterization of the Three-Dimensional Microstructure of a LiCoO2 Lithium-Ion Battery Cathode[J]. Mater Charact, 2013,80:62-68. doi: 10.1016/j.matchar.2013.03.011
Jiang Z, Qu Z. Lattice Boltzmann Simulation of Ion and Electron Transport in Lithium Ion Battery Porous Electrode During Discharge Process[J]. Energy Procedia, 2016,88:642-646. doi: 10.1016/j.egypro.2016.06.091
Kriston A, Pfrang A, Boon-Brett L. Development of Multi-scale Structure Homogenization Approaches Based on Modeled Particle Deposition for the Simulation of Electrochemical Energy Conversion and Storage Devices[J]. Electrochim Acta, 2016,201:380-394. doi: 10.1016/j.electacta.2016.03.029
Cerbelaud M, Lestriez B, Videcoq A. Understanding the Structure of Electrodes in Li-Ion Batteries:A Numerical Study[J]. J Electrochem Soc, 2015,162(8):A1485-A1492. doi: 10.1149/2.0431508jes
Jiang Z Y, Qu Z G, Zhou L. Lattice Boltzmann Simulation of Ion and Electron Transport During the Discharge Process in a Randomly Reconstructed Porous Electrode of a Lithium-Ion Battery[J]. Int J Heat Mass Transfer, 2018,123:500-513. doi: 10.1016/j.ijheatmasstransfer.2018.03.004
Jiang Z Y, Qu Z G, Zhou L. A Microscopic Investigation of Ion and Electron Transport in Lithium-Ion Battery Porous Electrodes Using the Lattice Boltzmann Method[J]. Appl Energy, 2017,194:530-539. doi: 10.1016/j.apenergy.2016.10.125
He S, Habte B T, Jiang F. LBM Prediction of Effective Electric and Species Transport Properties of Lithium-Ion Battery Graphite Anode[J]. Solid State Ionics, 2016,296:146-153. doi: 10.1016/j.ssi.2016.09.021
Wu L, Xiao X, Wen Y. Three-Dimensional Finite Element Study on Stress Generation in Synchrotron X-ray Tomography Reconstructed Nickel-Manganese-Cobalt Based Half Cell[J]. J Power Sources, 2016,336:8-18. doi: 10.1016/j.jpowsour.2016.10.052
Kashkooli A G, Amirfazli A, Farhad S. Representative Volume Element Model of Lithium-Ion Battery Electrodes Based on X-ray Nano-Tomography[J]. J Appl Electrochem, 2017,47(3):281-293. doi: 10.1007/s10800-016-1037-y
Kashkooli A G, Farhad S, Lee D U. Multiscale Modeling of Lithium-Ion Battery Electrodes Based on Nano-scale X-ray Computed Tomography[J]. J Power Sources, 2016,307:496-509. doi: 10.1016/j.jpowsour.2015.12.134
Ogihara N, Itou Y, Sasaki T. Impedance Spectroscopy Characterization of Porous Electrodes Under Different Electrode Thickness Using a Symmetric Cell for High-Performance Lithium-Ion Batteries[J]. The J Phys Chem C, 2015,119(9):4612-4619. doi: 10.1021/jp512564f
Nara H, Morita K, Mukoyama D. Impedance Analysis of LiNi1/3Mn1/3Co1/3O2 Cathodes with Different Secondary-Particle Size Distribution in Lithium-Ion Battery[J]. Electrochim Acta, 2017,241:323-330. doi: 10.1016/j.electacta.2017.04.153
Landesfeind J, Hattendorff J, Ehrl A. Tortuosity Determination of Battery Electrodes and Separators by Impedance Spectroscopy[J]. J Electrochem Soc, 2016,163(7):A1373-A1387. doi: 10.1149/2.1141607jes
Ogihara N, Kawauchi S, Okuda C. Theoretical and Experimental Analysis of Porous Electrodes for Lithium-Ion Batteries by Electrochemical Impedance Spectroscopy Using a Symmetric Cell[J]. J Electrochem Soc, 2012,159(7):A1034-A1039. doi: 10.1149/2.057207jes
Chen Y H, Wang C W, Zhang X. Porous Cathode Optimization for Lithium Cells:Ionic and Electronic Conductivity, Capacity, and Selection of Materials[J]. J Power Sources, 2010,195(9):2851-2862. doi: 10.1016/j.jpowsour.2009.11.044
Dash R, Pannala S. Theoretical Limits of Energy Density in Silicon-Carbon Composite Anode Based Lithium Ion Batteries[J]. Sci Rep-UK, 2016,627449. doi: 10.1038/srep27449
Heubner C, Langklotz U, Michaelis A. Theoretical Optimization of Electrode Design Parameters of Si Based Anodes for Lithium-Ion Batteries[J]. J Energy Storage, 2018,15:181-190. doi: 10.1016/j.est.2017.11.009
Zhao H, Yang Q, Yuca N. A Convenient and Versatile Method to Control the Electrode Microstructure Toward High-Energy Lithium-Ion Batteries[J]. Nano Lett, 2016,16(7):4686-4690. doi: 10.1021/acs.nanolett.6b02156
Ramadesigan V, Methekar R N, Latinwo F. Optimal Porosity Distribution for Minimized Ohmic Drop Across a Porous Electrode[J]. J Electrochem Soc, 2010,157(12):A1328-A1334. doi: 10.1149/1.3495992
Golmon S, Maute K, Dunn M L. A Design Optimization Methodology for Li+ Batteries[J]. J Power Sources, 2014,253:239-250. doi: 10.1016/j.jpowsour.2013.12.025
Dai Y, Srinivasan V. On Graded Electrode Porosity as a Design Tool for Improving the Energy Density of Batteries[J]. J Electrochem Soc, 2016,163(3):A406-A416. doi: 10.1149/2.0301603jes
Du Z, Wood D L, Daniel C. Understanding Limiting Factors in Thick Electrode Performance as Applied to High Energy Density Li-Ion Batteries[J]. J Appl Electrochem, 2017,47(3):405-415. doi: 10.1007/s10800-017-1047-4
Huang C, Young N P, Zhang J. A Two Layer Electrode Structure for Improved Li Ion Diffusion and Volumetric Capacity in Li Ion Batteries[J]. Nano Energy, 2017,31:377-385. doi: 10.1016/j.nanoen.2016.11.043
Ebner M, Chung D, Garcia R E. Tortuosity Anisotropy in Lithium-Ion Battery Electrodes[J]. Adv Energy Mater, 2014,4(5)13012785.
Chung D, Ebner M, Ely D R. Validity of the Bruggeman Relation for Porous Electrodes[J]. Model Simul Mater Sci, 2013,21(7)740097.
Ebner M, Wood V. Tool for Tortuosity Estimation in Lithium Ion Battery Porous Electrodes[J]. J Electrochem Soc, 2015,162(2):A3064-A3070. doi: 10.1149/2.0111502jes
Dubeshter T, Sinha P K, Sakars A. Measurement of Tortuosity and Porosity of Porous Battery Electrodes[J]. J Electrochem Soc, 2014,161(4):A599-A605. doi: 10.1149/2.073404jes
Vadakkepatt A, Trembacki B, Mathur S R. Bruggeman's Exponents for Effective Thermal Conductivity of Lithium-Ion Battery Electrodes[J]. J Electrochem Soc, 2016,163(2):A119-A130. doi: 10.1149/2.0151602jes
Chen-Wiegart Y K, Demike R, Erdonmez C. Tortuosity Characterization of 3D Microstructure at Nano-scale for Energy Storage and Conversion Materials[J]. J Power Sources, 2014,249:349-356. doi: 10.1016/j.jpowsour.2013.10.026
Bae C, Erdonmez C K, Halloran J W. Design of Battery Electrodes with Dual-Scale Porosity to Minimize Tortuosity and Maximize Performance[J]. Adv Mater, 2013,25(9):1254-1258. doi: 10.1002/adma.v25.9
Mohammadian S K, Zhang Y. Improving Wettability and Preventing Li-Ion Batteries from Thermal Runaway Using Microchannels[J]. Int J Heat Mass Transfer, 2018,118(Supplement C):911-918.
Behr S, Amin R, Chiang Y. Highly Structured, Additive Free Lithium-Ion Cathodes by Freeze-Casting Technology[J]. Ceram Forum Int, 2015,92(4):39-43.
Sander J S, Erb R M, Li L. High-Performance Battery Electrodes via Magnetic Templating[J]. Nat Energy, 2016,116099. doi: 10.1038/nenergy.2016.99
Billaud J, Bouville F, Magrini T. Magnetically Aligned Graphite Electrodes for High-Rate Performance Li-Ion Batteries[J]. Nat Energy, 2016,116097. doi: 10.1038/nenergy.2016.97
Lu L L, Lu Y Y, Xiao Z J. Wood-Inspired High-Performance Ultrathick Bulk Battery Electrodes[J]. Adv Mater, 20181706745.
Dominko R, Gaberscek M, Drofenik J. The Role of Carbon Black Distribution in Cathodes for Li Ion Batteries[J]. J Power Sources, 2003,119/120/121:770-773.
Zheng H, Yang R, Liu G. Cooperation Between Active Material, Polymeric Binder and Conductive Carbon Additive in Lithium Ion Battery Cathode[J]. J Phys Chem C, 2012,116(7):4875-4882. doi: 10.1021/jp208428w
Liu G, Zheng H, Song X. Particles and Polymer Binder Interaction:A Controlling Factor in Lithium-Ion Electrode Performance[J]. J Electrochem Soc, 2012,159(3)A214. doi: 10.1149/2.024203jes
Ha S, Ramani V K, Lu W. Optimization of Inactive Material Content in Lithium Iron Phosphate Electrodes for High Power Applications[J]. Electrochim Acta, 2016,191:173-182. doi: 10.1016/j.electacta.2016.01.049
Li W, Chen S, Yu J. In-Situ Synthesis of Interconnected SWCNT/OMC Framework on Silicon Nanoparticles for High Performance Lithium-Ion Batteries[J]. Green Energy Environ, 2016,1(1):91-99. doi: 10.1016/j.gee.2016.04.005
Shi Y, Wen L, Pei S. Choice for Graphene as Conductive Additive for Cathode of Lithium-Ion Batteries[J]. J Energy Chem, 2018.
SU Fangyuan, TANG Rui, HE Yanbing. Graphene Conductive Additives for Lithium Ion Batteries:Origin, Progress and Prospect[J]. Chinese Sci Bull, 2017,62(32):3743-3756.
Bockholt H, Indrikova M, Netz A. The Interaction of Consecutive Process Steps in the Manufacturing of Lithium-Ion Battery Electrodes with Regard to Structural and Electrochemical Properties[J]. J Power Sources, 2016,325:140-151. doi: 10.1016/j.jpowsour.2016.05.127
Liu T, Li X, Sun S. Analysis of the Relationship Between Vertical Imparity Distribution of Conductive Additive and Electrochemical Behaviors in Lithium Ion Batteries[J]. Electrochim Acta, 2018,269:422-428. doi: 10.1016/j.electacta.2018.03.038
Chen L C, Liu D, Liu T J. Improvement of Lithium-Ion Battery Performance Using a Two-Layered Cathode by Simultaneous Slot-Die Coating[J]. J Energy Storage, 2016(6):156-162.
Li C, Wang Y. Binder Distributions in Water-Based and Organic-Based LiCoO2Electrode Sheets and Their Effects on Cell Performance[J]. J Electrochem Soc, 2011,158(12):A1361-A1370. doi: 10.1149/2.107112jes
Baunach M, Jaiser S, Schmelzle S. Delamination Behavior of Lithium-Ion Battery Anodes:Influence of Drying Temperature During Electrode Processing[J]. Dry Technol, 2016,34(4):462-473. doi: 10.1080/07373937.2015.1060497
Stein I M, Mistry A, Mukherjee P P. Mechanistic Understanding of the Role of Evaporation in Electrode Processing[J]. J Electrochem Soc, 2017,164(7):A1616-A1627. doi: 10.1149/2.1271707jes
Jaiser S, Funk L, Baunach M. Experimental Investigation into Battery Electrode Surfaces:The Distribution of Liquid at the Surface and the Emptying of Pores During Drying[J]. J Colloid Interface Sci, 2017,494:22-31. doi: 10.1016/j.jcis.2017.01.063
Jaiser S, Kumberg J, Klaver J. Microstructure Formation of Lithium-Ion Battery Electrodes During Drying-An Ex-Situ Study Using Cryogenic Broad Ion Beam Slope-Cutting and Scanning Electron Microscopy(Cryo-BIB-SEM)[J]. J Power Sources, 2017,345:97-107. doi: 10.1016/j.jpowsour.2017.01.117
Liu Z, Battaglia V, Mukherjee P P. Mesoscale Elucidation of the Influence of Mixing Sequence in Electrode Processing[J]. Langmuir ACS J Surf Colloids, 2014,30(50):15102-15113. doi: 10.1021/la5038469
Wenzel V, Nirschl H, Nötzel D. Challenges in Lithium-Ion-Battery Slurry Preparation and Potential of Modifying Electrode Structures by Different Mixing Processes[J]. Energy Technol-Ger, 2015,3(7):692-698. doi: 10.1002/ente.201402218
Kraytsberg A, Ein Eli Y. Conveying Advanced Li-Ion Battery Materials into Practice the Impact of Electrode Slurry Preparation Skills[J]. Adv Energy Mater, 2016,6(21)1600655. doi: 10.1002/aenm.201600655
Bauer W, Tzel D N, Wenzel V. Influence of Dry Mixing and Distribution of Conductive Additives in Cathodes for Lithium Ion Batteries[J]. J Power Sources, 2015,288:359-367. doi: 10.1016/j.jpowsour.2015.04.081
Westphal B G, Mainusch N, Meyer C. Influence of High Intensive Dry Mixing and Calendering on Relative Electrode Resistivity Determined via an Advanced Two Point Approach[J]. J Energy Storage, 2017,11:76-85. doi: 10.1016/j.est.2017.02.001
Bockholt H, Haselrieder W, Kwade A. Intensive Powder Mixing for Dry Dispersing of Carbon Black and Its Relevance for Lithium-Ion Battery Cathodes[J]. Powder Technol, 2016,297:266-274. doi: 10.1016/j.powtec.2016.04.011
Whitacre J F, Zaghib K, West W C. Dual Active Material Composite Cathode Structures for Li-Ion Batteries[J]. J Power Sources, 2008,177(2):528-536. doi: 10.1016/j.jpowsour.2007.11.076
Ji H S, Ahn W, Kwon I. Operability Coating Window of Dual-Layer Slot Coating Process Using Viscocapillary Model[J]. Chem Eng Sci, 2016,143:122-129. doi: 10.1016/j.ces.2015.12.016
Ludwig B, Zheng Z, Shou W. Solvent-Free Manufacturing of Electrodes for Lithium-Ion Batteries[J]. Sci Rep-UK, 2016,623150. doi: 10.1038/srep23150
Al-Shroofy M, Zhang Q, Xu J. Solvent-Free Dry Powder Coating Process for Low-Cost Manufacturing of LiNi1/3Mn1/3Co1/3O2 Cathodes in Lithium-Ion Batteries[J]. J Power Sources, 2017,352:187-193. doi: 10.1016/j.jpowsour.2017.03.131
Hamamoto K, Fukushima M, Mamiya M. Morphology Control and Electrochemical Properties of LiFePO4/C Composite Cathode for Lithium Ion Batteries[J]. Solid State Ionics, 2012,225:560-563. doi: 10.1016/j.ssi.2012.01.034
Li J, Leu M C, Panat R. A Hybrid Three-Dimensionally Structured Electrode for Lithium-Ion Batteries Via 3D Printing[J]. Mater Des, 2017,119:417-424. doi: 10.1016/j.matdes.2017.01.088
Azhari A, Marzbanrad E, Yilman D. Binder-Jet Powder-Bed Additive Manufacturing(3D Printing) of Thick Graphene-Based Electrodes[J]. Carbon, 2017,119:257-266. doi: 10.1016/j.carbon.2017.04.028
Jiandong Liu , Zhijia Zhang , Mikhail Kamenskii , Filipp Volkov , Svetlana Eliseeva , Jianmin Ma . Research Progress on Cathode Electrolyte Interphase in High-Voltage Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100011-. doi: 10.3866/PKU.WHXB202308048
Mingyang Men , Jinghua Wu , Gaozhan Liu , Jing Zhang , Nini Zhang , Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019
Caiyun Jin , Zexuan Wu , Guopeng Li , Zhan Luo , Nian-Wu Li . 用于金属锂电池的磷腈基阻燃人工界面层. Acta Physico-Chimica Sinica, 2025, 41(8): 100094-. doi: 10.1016/j.actphy.2025.100094
Jiahe LIU , Gan TANG , Kai CHEN , Mingda ZHANG . Effect of low-temperature electrolyte additives on low-temperature performance of lithium cobaltate batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 719-728. doi: 10.11862/CJIC.20250023
Tianqi Bai , Kun Huang , Fachen Liu , Ruochen Shi , Wencai Ren , Songfeng Pei , Peng Gao , Zhongfan Liu . 石墨烯厚膜热扩散系数与微观结构的关系. Acta Physico-Chimica Sinica, 2025, 41(3): 2404024-. doi: 10.3866/PKU.WHXB202404024
Wenyan Dan , Weijie Li , Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060
Zijuan LI , Xuan LÜ , Jiaojiao CHEN , Haiyang ZHAO , Shuo SUN , Zhiwu ZHANG , Jianlong ZHANG , Yanling MA , Jie LI , Zixian FENG , Jiahui LIU . Synthesis of visual fluorescence emission CdSe nanocrystals based on ligand regulation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 308-320. doi: 10.11862/CJIC.20240138
Hui Wang , Abdelkader Labidi , Menghan Ren , Feroz Shaik , Chuanyi Wang . 微观结构调控的g-C3N4在光催化NO转化中的最新进展:吸附/活化位点的关键作用. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-. doi: 10.1016/j.actphy.2024.100039
Siyu Zhang , Kunhong Gu , Bing'an Lu , Junwei Han , Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028
Ronghui LI . Photocatalysis performance of nitrogen-doped CeO2 thin films via ion beam-assisted deposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1123-1130. doi: 10.11862/CJIC.20240440
Yipeng Zhou , Chenxin Ran , Zhongbin Wu . Metacognitive Enhancement in Diversifying Ideological and Political Education within Graduate Course: A Case Study on “Solar Cell Performance Enhancement Technology”. University Chemistry, 2024, 39(6): 151-159. doi: 10.3866/PKU.DXHX202312096
Yu Guo , Zhiwei Huang , Yuqing Hu , Junzhe Li , Jie Xu . 钠离子电池中铁基异质结构负极材料的最新研究进展. Acta Physico-Chimica Sinica, 2025, 41(3): 2311015-. doi: 10.3866/PKU.WHXB202311015
Qi Li , Pingan Li , Zetong Liu , Jiahui Zhang , Hao Zhang , Weilai Yu , Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030
Bowen Yang , Rui Wang , Benjian Xin , Lili Liu , Zhiqiang Niu . C-SnO2/MWCNTs Composite with Stable Conductive Network for Lithium-based Semi-Solid Flow Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100015-. doi: 10.3866/PKU.WHXB202310024
Yixuan Gao , Lingxing Zan , Wenlin Zhang , Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091
Nengmin ZHU , Wenhao ZHU , Xiaoyao YIN , Songzhi ZHENG , Hao LI , Zeyuan WANG , Wenhao WEI , Xuanheng CHEN , Weihai SUN . Preparation of high-performance CsPbBr3 perovskite solar cells by the aqueous solution solvent method. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1131-1140. doi: 10.11862/CJIC.20240419
Tao Jiang , Yuting Wang , Lüjin Gao , Yi Zou , Bowen Zhu , Li Chen , Xianzeng Li . Experimental Design for the Preparation of Composite Solid Electrolytes for Application in All-Solid-State Batteries: Exploration of Comprehensive Chemistry Laboratory Teaching. University Chemistry, 2024, 39(2): 371-378. doi: 10.3866/PKU.DXHX202308057
Haihua Yang , Minjie Zhou , Binhong He , Wenyuan Xu , Bing Chen , Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100
Xiaoyao YIN , Wenhao ZHU , Puyao SHI , Zongsheng LI , Yichao WANG , Nengmin ZHU , Yang WANG , Weihai SUN . Fabrication of all-inorganic CsPbBr3 perovskite solar cells with SnCl2 interface modification. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 469-479. doi: 10.11862/CJIC.20240309
Pengyang FAN , Shan FAN , Qinjin DAI , Xiaoying ZHENG , Wei DONG , Mengxue WANG , Xiaoxiao HUANG , Yong ZHANG . Preparation and performance of rich 1T-MoS2 nanosheets for high-performance aqueous zinc ion battery cathode materials. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 675-682. doi: 10.11862/CJIC.20240339
(a)NMC; (b)LCO; (c)graphite electrodes