Citation: YANG Mei, SHI Zhenling, XU Nan, MAO Dan, WANG Dan. Research Progress of Hollow Micro/Nano-Structured Photoanode Materials for Dye-Sensitized Solar Cells[J]. Chinese Journal of Applied Chemistry, ;2018, 35(8): 902-915. doi: 10.11944/j.issn.1000-0518.2018.08.180177 shu

Research Progress of Hollow Micro/Nano-Structured Photoanode Materials for Dye-Sensitized Solar Cells

  • Corresponding author: YANG Mei, myang@ipe.ac.cn
  • Received Date: 16 May 2018
    Revised Date: 26 June 2018
    Accepted Date: 26 June 2018

    Fund Project: the National Natural Science Foundation of China 51472244Supported by the National Natural Science Foundation of China(No.51472244, No.51672274)the National Natural Science Foundation of China 51672274

Figures(9)

  • The dye-sensitized solar cell(DSSC) has attracted a great attention in the solar energy conversion fields owing to its advantages including low cost, simple fabrication process, and relatively high efficiency. The component and microstructure of semiconductor photoanode as an important part of DSSC have direct roles on the photoelectrochemical performance of solar cell. Hollow micro/nano-structure can provide large surface area and high loading capacity of dyes, improve the light harvesting and promote the charge transport in photovoltaic devices. Therefore, the photoanode materials with hollow micro/nano-structures became a hot topic in recent years. This review addresses the progress of hollow micro/nano-structured photoanode materials, including hollow microsphere, hollow box, core-shell structure, hierarchical hollow microspheres, multi-shelled structure besides the pure or hybrid components. The relationships between each structure and power conversion efficiency(PCE) are analyzed especially. The facing challenge and prospect of hollow micro/nano-structured photoanode in the future are also discussed.
  • 加载中
    1. [1]

      Service R F. Is It Time to Shoot for the Sun[J]. Science, 2005,309(5734):548-551. doi: 10.1126/science.309.5734.548

    2. [2]

      Potocnik J. Renewable Energy Sources and the Realities of Setting an Energy Agenda[J]. Science, 2007,315(5813):810-811. doi: 10.1126/science.1139086

    3. [3]

      Schiermeier Q, Tollefson J, Scully T. Energy Alternatives:Electricity without Carbon[J]. Nature, 2008,454(7206):816-823. doi: 10.1038/454816a

    4. [4]

      Hagfeldt A, Boschloo G, Sun L. Dye-Sensitized Solar Cells[J]. Chem Rev, 2010,110(11):6595-6663. doi: 10.1021/cr900356p

    5. [5]

      O'Regan B, Grätzel M. A Low-Cost, High-Efficient Solar Cell Based on Dye-Sensitized Colloidal TiO2 Films[J]. Nature, 1991,353(6346):737-740. doi: 10.1038/353737a0

    6. [6]

      Grätzel M. Solar Energy Conversion by Dye-Sensitized Photovoltaic Cells[J]. Inorg Chem, 2005,44(20):6841-6851. doi: 10.1021/ic0508371

    7. [7]

      Zhang S, Yang X, Numata Y. Highly Efficient Dye-Sensitized Solar Cells:Progress and Future Challenges[J]. Energy Environ Sci, 2013,6(5):1443-1464. doi: 10.1039/c3ee24453a

    8. [8]

      Chen M, Ye C, Zhou S. Recent Advances in Applications and Performance of Inorganic Hollow Spheres in Devices[J]. Adv Mater, 2013,44(49):5343-5351.  

    9. [9]

      Qi J, Lai X, Wang J. Multi-Shelled Hollow Micro-/Nanostructures[J]. Chem Soc Rev, 2015,44(19):6749-6773. doi: 10.1039/C5CS00344J

    10. [10]

      Zhou L, Zhuang Z, Zhao H. Intricate Hollow Structures:Controlled Synthesis and Applications in Energy Storage and Conversion[J]. Adv Mater, 2017,29(20)1602914. doi: 10.1002/adma.v29.20

    11. [11]

      Mishra A, Fischer M K, Bäuerle P. Metal-Free Organic Dyes for Dye-Sensitized Solar Cells:From Structure:Property Relationships to Design Rules[J]. Angew Chem Int Ed, 2009,48(14):2474-2499. doi: 10.1002/anie.v48:14

    12. [12]

      Chung I, Lee B, He J. All-Solid-State Dye-Sensitized Solar Cells with High Efficiency[J]. Nature, 2012,485(7399):486-489. doi: 10.1038/nature11067

    13. [13]

      Lee C T, Peng J D, Li C T. Ni3Se4 Hollow Architectures as Catalytic Materials for the Counter Electrodes of Dye-Sensitized Solar Cells[J]. Nano Energy, 2014,10:201-211. doi: 10.1016/j.nanoen.2014.09.017

    14. [14]

      Grätzel M. Dye-Sensitized Solar Cells[J]. J Photochem Photobiol C, 2003,4:145-153. doi: 10.1016/S1389-5567(03)00026-1

    15. [15]

      Kakiage K, Aoyama Y, Yano T. Highly-Efficient Dye-Sensitized Solar Cells with Collaborative Sensitization by Silyl-anchor and Carboxy-anchor Dyes[J]. Chem Commun, 2015,51(88)15894. doi: 10.1039/C5CC06759F

    16. [16]

      Ning Z, Fu Y, Tian H. Improvement of Dye-Sensitized Solar Cells:What We Know and What We Need to Know[J]. Energy Environ Sci, 2010,3(9):1170-1181. doi: 10.1039/c003841e

    17. [17]

      Mathew S, Yella A, Gao P. Dye-Sensitized Solar Cells with 13% Efficiency Achieved Through the Molecular Engineering of Porphyrin Sensitizers[J]. Nat Chem, 2014(3):242-247.  

    18. [18]

      Yella A, Lee H W, Tsao H N. Porphyrin-Sensitized Solar Cells with Cobalt(Ⅱ/Ⅲ)-based Redox Electrolyte Exceed 12 Percent Efficiency[J]. Science, 2011,334(6056):629-634. doi: 10.1126/science.1209688

    19. [19]

      Li Z Q, Chen W C, Guo F L. Mesoporous TiO2 Yolk-Shell Microspheres for Dye-Sensitized Solar Cells with a High Efficiency Exceeding 11%[J]. Sci Rep, 2015,514178. doi: 10.1038/srep14178

    20. [20]

      Wu W Q, Xu Y F, Rao H S. Multistack Integration of Three-Dimensional Hyperbranched Anatase Titania Architectures for High-Efficiency Dye-Sensitized Solar Cells[J]. J Am Chem Soc, 2014,136(17):6437-6445. doi: 10.1021/ja5015635

    21. [21]

      Koo H J, Kim Y J, Lee Y H. Nano-embossed Hollow Spherical TiO2 as Bifunctional Material for High-Efficiency Dye-Sensitized Solar Cells[J]. Adv Mater, 2008,20(1):195-199. doi: 10.1002/(ISSN)1521-4095

    22. [22]

      Wang Z S, Kawauchi H, Kashima T. Significant Influence of TiO2 Photoelectrode Morphology on the Energy Conversion Efficiency of N719 Dye-Sensitized Solar Cell[J]. Coord Chem Rev, 2004,248(13):1381-1389.  

    23. [23]

      Bach U, Lupo D, Comte P. Solid-state Dye-Sensitized Mesoporous TiO2 Solar Cells with High Photon-to-Electron Conversion Efficiencies[J]. Nature, 1998,395(6702):583-585. doi: 10.1038/26936

    24. [24]

      Nazeeruddin M K, Pechy P, Renouard T. Engineering of Efficient Panchromatic Sensitizers for Nanocrystalline TiO2-based Solar Cells[J]. J Am Chem Soc, 2001,123(8):1613-1624. doi: 10.1021/ja003299u

    25. [25]

      Jose R, Thavasi V, Ramakrishna S. Metal Oxides for Dye-Sensitized Solar Cells[J]. J Am Ceram Soc, 2009,92(2):289-301. doi: 10.1111/jace.2009.92.issue-2

    26. [26]

      Quintana M, Edvinsson T, Hagfeldt A. Comparison of Dye-Sensitized ZnO and TiO2 Solar Cells:Studies of Charge Transport and Carrier Lifetime[J]. J Phys Chem C, 2007,111(2):1035-1041. doi: 10.1021/jp065948f

    27. [27]

      Zhang Q, Dandeneau C S, Zhou X. ZnO Nanostructures for Dye-Sensitized Solar Cells[J]. Adv Mater, 2009,21(41):4087-4108. doi: 10.1002/adma.v21:41

    28. [28]

      Gubbala S, Chakrapani V, Kumar V. Band-edge Engineered Hybrid Structures for Dye-Sensitized Solar Cells based on SnO2 Nanowires[J]. Adv Funct Mater, 2008,18(16):2411-2418. doi: 10.1002/adfm.v18:16

    29. [29]

      Chen J, Li C, Xu F. Hollow SnO2 Microspheres for High-Efficiency Bilayered Dye Sensitized Solar Cell[J]. RSC Adv, 2012,2(19):7384-7387. doi: 10.1039/c2ra20909h

    30. [30]

      Sayama K, Sugihara H, Arakawa H. Photoelectrochemical Properties of a Porous Nb2O5 Electrode Sensitized by a Ruthenium Dye[J]. Chem Mater, 1998,10(12):3825-3832. doi: 10.1021/cm980111l

    31. [31]

      Law M, Greene L E, Johnson J C. Nanowire Dye-Sensitized Solar Cells[J]. Nat Mater, 2005,4:455-459. doi: 10.1038/nmat1387

    32. [32]

      Deepak T G, Anjusree G S, Thomas S. A Review on Materials for Light Scattering in Dye-sensitized Solar Cells[J]. RSC Adv, 2014,417615. doi: 10.1039/C4RA01308E

    33. [33]

      Wang Y F, Li K N, Xu Y F. Hydrothermal Fabrication of Hierarchically Macroporous Zn2SnO4 for Highly Efficient Dye-Sensitized Solar Cells[J]. Nanoscale, 2013,5:5940-5948. doi: 10.1039/c3nr01133j

    34. [34]

      Xu Y, Schoonen M A A. The Absolute Energy Positions of Conduction and Valence Bands of Selected Semiconducting Minerals[J]. Am Mineral, 2000,85(3/4):543-556.

    35. [35]

      Concina I, Vomiero A. Metal Oxide Semiconductors for Dye-and Quantum-Dot-Sensitized Solar Cells[J]. Small, 2015,11(15):1744-1774. doi: 10.1002/smll.201402334

    36. [36]

      Chen H Y, Kuang D B, Su C Y. Hierarchically Micro/nanostructured Photoanode Materials for Dye-Sensitized Solar Cells[J]. J Mater Chem, 2012,22(31):15475-15489. doi: 10.1039/c2jm32402d

    37. [37]

      Hore S, Nitz P, Vetter C. Scattering Spherical Voids in Nanocrystalline TiO2-enhancement of Efficiency in Dye-Sensitized Solar Cells[J]. Chem Commun, 2005,15(15):2011-2013.  

    38. [38]

      Yang S C, Yang D J, Kim J. Hollow TiO2 Hemispheres Obtained by Colloidal Templating for Application in Dye-Sensitized Solar Cells[J]. Adv Mater, 2008,20(5):1059-1064. doi: 10.1002/(ISSN)1521-4095

    39. [39]

      Khan J, Gu J, Meng Y. Anatase TiO2 Single Crystal Hollow Nanoparticles:Their Facile Synthesis and High-performance in Dye-Sensitized Solar Cells[J]. CrystEngComm, 2017,19:325-334. doi: 10.1039/C6CE02062C

    40. [40]

      Pan H, Qian J, Cui Y. Hollow Anatase TiO2 Porous Microspheres with V-Shaped Channels and Exposed (101) Facets:Anisotropic Etching and Photovoltaic Properties[J]. J Mater Chem, 2012,22(13):6002-6009. doi: 10.1039/c2jm15925b

    41. [41]

      Wu X, Lu G Q, Wang L. Dual-Functional Upconverter-Doped TiO2 Hollow Shells for Light Scattering and Near-Infrared Sunlight Harvesting in Dye-Sensitized Solar Cells[J]. Adv Energy Mater, 2013,3(6):704-707. doi: 10.1002/aenm.201200933

    42. [42]

      Han G, Wang M, Li D. Novel Upconversion Er, Yb-CeO2 Hollow Spheres as Scattering Layer Materials for Efficient Dye-sensitized Solar Cells[J]. Sol Energy Mater Sol Cells, 2017,160:54-59. doi: 10.1016/j.solmat.2016.10.021

    43. [43]

      Li Y Y, Wang J G, Liu X R. Au/TiO2 Hollow Spheres with Synergistic Effect of Plasmonic Enhancement and Light Scattering for Improved Dye-Sensitized Solar Cells[J]. ACS Appl Mater Interfaces, 2017,9(37):31691-31698. doi: 10.1021/acsami.7b04624

    44. [44]

      Yun J, Hwang S H, Jang J. Fabrication of Au@Ag Core/Shell Nanoparticles Decorated TiO2 Hollow Structure for Efficient Light-Harvesting in Dye-Sensitized Solar Cells[J]. ACS Appl Mater Interfaces, 2015,7(3):2055-2063. doi: 10.1021/am508065n

    45. [45]

      Lü X, Huang F, Mou X. A General Preparation Strategy for Hybrid TiO2 Hierarchical Spheres and Their Enhanced Solar Energy Utilization Efficiency[J]. Adv Mater, 2010,22(33):3719-3722. doi: 10.1002/adma.201001008

    46. [46]

      He C X, Lei B X, Wang Y F. Sonochemical Preparation of Hierarchical ZnO Hollow Spheres for Efficient Dye-Sensitized Solar Cells[J]. Chem Eur J, 2010,16(29):8757-8761. doi: 10.1002/chem.201000264

    47. [47]

      Wang G, Zhu X, Yu J. Bilayer Hollow/Spindle-like Anatase TiO2 Photoanode for High Efficiency Dye-Sensitized Solar Cells[J]. J Power Sources, 2015,278:344-351. doi: 10.1016/j.jpowsour.2014.12.091

    48. [48]

      Zhao L, Li J, Shi Y. Double Light-scattering Layer Film based on TiO2 Hollow Spheres and TiO2 Nanosheets:Improved Efficiency in Dye-Sensitized Solar Cells[J]. J Alloys Compd, 2013,575(20):168-173.

    49. [49]

      Chavaa R K, Lee W M, Oh S Y. Improvement in Light Harvesting and Device Performance of Dye Sensitized Solar Cells Using Electrophoretic Deposited Hollow TiO2 NPs Scattering Layer[J]. Sol Energy Mater Sol Cells, 2017,161:255-262. doi: 10.1016/j.solmat.2016.11.037

    50. [50]

      Yu J, Li Qn, Shu Z. Dye-sensitized Solar Cells based on Double-layered TiO2 Composite Films and Enhanced Photovoltaic Performance[J]. Electrochim Acta, 2011,56(18):6293-6298. doi: 10.1016/j.electacta.2011.05.045

    51. [51]

      Zhang Y, Zhang J, Wang P. Anatase TiO2 Hollow Spheres Embedded TiO2 Nanocrystalline Photoanode for Dye-Sensitized Solar Cells[J]. Mater Chem Phys, 2010,123(2/3):595-600.

    52. [52]

      Pang H, Yang H, Guo C X. Nanoparticle Self-assembled Hollow TiO2 Spheres with well Matching Visible Light Scattering for High Performance Dye-Sensitized Solar Cells[J]. Chem Commun, 2012,48(70):8832-8834. doi: 10.1039/c2cc34355j

    53. [53]

      Dadgostar S, Tajabadi F, Taghavinia N. Mesoporous Submicrometer TiO2 Hollow Spheres as Scatterers in Dye-Sensitized Solar Cells[J]. ACS Appl Mater Interfaces, 2012,4(6):2964-2968. doi: 10.1021/am300329p

    54. [54]

      Yu J, Fan J, Zhao L. Dye-Sensitized Solar Cells Based on Hollow Anatase TiO2 Spheres Prepared by Self-transformation Method[J]. Electrochim Acta, 2010,55(3):597-602. doi: 10.1016/j.electacta.2009.09.021

    55. [55]

      Niu L, Zhang Q, Liu J. TiO2 Nanoparticles Embedded in Hollow Cube with Highly Exposed {001} Facets:Facile Synthesis and Photovoltaic Applications[J]. J Alloys Compd, 2016,656:863-870. doi: 10.1016/j.jallcom.2015.10.039

    56. [56]

      Feng J, Hong Y, Zhang J. Novel Core-Shell TiO2 Microsphere Scattering Layer for Dye-Sensitized Solar Cells[J]. J Mater Chem A, 2014,2(5):1502-1508. doi: 10.1039/C3TA13523C

    57. [57]

      Bai J, Sun X, Han G. Double-shell CeO2@TiO2 Hollow Spheres Composites with Enhanced Light Harvesting and Electron Transfer in Dye-Sensitized Solar Cells[J]. J Alloys Compd, 2017,22:864-871.

    58. [58]

      Kay A, Grätzel M. Dye-Sensitized Core-Shell Nanocrystals:Improved Efficiency of Mesoporous Tin Oxide Electrodes Coated with a Thin Layer of an Insulating Oxide[J]. Chem Mater, 2002,14(7):2930-2935. doi: 10.1021/cm0115968

    59. [59]

      Xie F, Li Y, Dou J. Facile Synthesis of SnO2 Coated Urchin-like TiO2 Hollow Microspheres as Efficient Scattering Layer for Dye-Sensitized Solar Cells[J]. J Power Sources, 2016,336:143-149. doi: 10.1016/j.jpowsour.2016.10.061

    60. [60]

      Du J, Qi J, Wang D. Facile Synthesis of Au@TiO2 Core-Shell Hollow Spheres for Dye-Sensitized Solar Cells with Remarkably Improved Efficiency[J]. Energy Environ Sci, 2012,5(5):6914-6918. doi: 10.1039/c2ee21264a

    61. [61]

      Thapa A, Zai J, Elbohy H. TiO2 Coated Urchin-like SnO2 Microspheres for Efficient Dye-Sensitized Solar Cells[J]. Nano Research, 2014,7(8):1154-1163. doi: 10.1007/s12274-014-0478-z

    62. [62]

      Wu W Q, Xu Y F, Rao H S. Constructing 3D Branched Nanowire Coated Macroporous Metal Oxide Electrodes with Homogeneous or Heterogeneous Compositions for Efficient Solar Cells[J]. Angew Chem Int Ed, 2014,53(19):4816-4821. doi: 10.1002/anie.201402371

    63. [63]

      Pan J H, Xing Wang Z, Huang Q. Large-scale Synthesis of Urchin-like Mesoporous TiO2 Hollow Spheres by Targeted Etching and Their Photoelectrochemical Properties[J]. Adv Funct Mater, 2014,24(1):95-104. doi: 10.1002/adfm.v24.1

    64. [64]

      Wang H, Li B, Gao J. SnO2 Hollow Nanospheres Enclosed by Single Crystalline Nanoparticles for Highly Efficient Dye-Sensitized Solar Cells[J]. CrystEngComm, 2012,14(16):5177-5181. doi: 10.1039/c2ce06531b

    65. [65]

      Ahn S H, Kim D J, Chi W S. Hierarchical Double-Shell Nanostructures of TiO2 Nanosheets on SnO2 Hollow Spheres for High-Efficiency, Solid-State, Dye-Sensitized Solar Cells[J]. Adv Funct Mater, 2014,24(32):5037-5044. doi: 10.1002/adfm.v24.32

    66. [66]

      Wang X, Feng J, Bai Y. Synthesis, Properties, and Applications of Hollow Micro-/Nanostructures[J]. Chem Rev, 2016,116(18):10983-11060. doi: 10.1021/acs.chemrev.5b00731

    67. [67]

      Wang J, Tang H, Wang H. Multi-shelled Hollow Micro-/Nanostructures:Promising Platforms for Lithium-Ion Batteries[J]. Mater Chem Front, 2017,1(3):414-430. doi: 10.1039/C6QM00273K

    68. [68]

      Xu H, Wang W. Template Synthesis of Multishelled Cu2O Hollow Spheres with a Single-Crystalline Shell Wall[J]. Angew Chem Int Ed, 2007,46(9):1489-1492. doi: 10.1002/(ISSN)1521-3773

    69. [69]

      Zhang H, Zhu Q, Zhang Y. One-Pot Synthesis and Hierarchical Assembly of Hollow Cu2O Microspheres with Nanocrystals-Composed Porous Multishell and Their Gas-Sensing Properties[J]. Adv Funct Mater, 2007,17(15):2766-2771. doi: 10.1002/(ISSN)1616-3028

    70. [70]

      Wang X, Wu X L, Guo Y G. Synthesis and Lithium Storage Properties of Co3O4 Nanosheet-Assembled Multishelled Hollow Spheres[J]. Adv Funct Mater, 2010,20(10):1680-1686. doi: 10.1002/adfm.v20:10

    71. [71]

      Liu J, Hartono S B, Jin Y G. A Facile Vesicle Template Route to Multi-shelled Mesoporous Silica Hollow Nanospheres[J]. J Mater Chem, 2010,20(22):4595-4601. doi: 10.1039/b925201k

    72. [72]

      Xi G, Yan Y, Ma Q. Synthesis of Multiple-Shell WO3 Hollow Spheres by a Binary Carbonaceous Template Route and Their Applications in Visible-Light Photocatalysis[J]. Chem Eur J, 2012,18(44):13949-13953. doi: 10.1002/chem.v18.44

    73. [73]

      Lai X Y, Li J, Korgel B A. General Synthesis and Gas-Sensing Properties of Multiple-Shell Metal Oxide Hollow Microspheres[J]. Angew Chem Int Ed, 2011,50(12):2738-2741. doi: 10.1002/anie.201004900

    74. [74]

      Li H, Ma H, Yang M. Highly Controlled Synthesis of Multi-shelled NiO Hollow Microspheres for Enhanced Lithium Storage Properties[J]. Mater Res Bull, 2017,87:224-229. doi: 10.1016/j.materresbull.2016.12.005

    75. [75]

      Ren H, Sun J, Yu R. Controllable Synthesis of Mesostructures from TiO2 Hollow to Porous Nanospheres with Superior Rate Performance for Lithium Ion Batteries[J]. Chem Sci, 2016,7(1):793-798. doi: 10.1039/C5SC03203B

    76. [76]

      Wang J, Tang H, Zhang L. Multi-shelled Metal Oxides Prepared via an Anion-Adsorption Mechanism for Lithium-Ion Batteries[J]. Nat Energy, 2016,116050. doi: 10.1038/nenergy.2016.50

    77. [77]

      Xu S, Hessel C, Ren H. α-Fe2O3 Multi-shelled Hollow Microspheres for Lithium Ion Battery Anodes with Superior Capacity and Charge Retention[J]. Energy Environ Sci, 2013,7(2):632-637.

    78. [78]

      Wang J, Yang N, Tang H. Accurate Control of Multi-shelled Co3O4 Hollow Microspheres for High-Performance Anode Materials in Lithium Ion Batteries[J]. Angew Chem Int Ed, 2013,52(25):6417-6420. doi: 10.1002/anie.201301622

    79. [79]

      Ren H, Yu R, Wang J. Multi-shelled TiO2 Hollow Microspheres as Anodes with Superior Reversible Capacity for Lithium Ion Batteries[J]. Nano Lett, 2014,14(11):6679-6684. doi: 10.1021/nl503378a

    80. [80]

      Wang J, Tang H, Ren H. pH-Regulated Synthesis of Multi-Shelled Manganese Oxide Hollow Microspheres as Supercapacitor Electrodes Using Carbonaceous Microspheres as Templates[J]. Adv Sci, 2014,1(1):1719-1720.

    81. [81]

      Zhao X, Yu R, Tang H. Formation of Septuple-Shelled (Co2/3Mn1/3)(Co5/6Mn1/6)2O4 Hollow Spheres as Electrode Material for Alkaline Rechargeable Battery[J]. Adv Mater, 2017,29(34)1700550. doi: 10.1002/adma.v29.34

    82. [82]

      Lai X, Halperta J E, Wang D. Recent advances in Micro-/Nano-structured Hollow Spheres for Energy Applications:From Simple to Complex Systems[J]. Energy Environ Sci, 2012,5(2):5604-5618. doi: 10.1039/C1EE02426D

    83. [83]

      Qian J, Liu P, Xiao Y. TiO2-Coated Multilayered SnO2 Hollow Microspheres for Dye-Sensitized Solar Cells[J]. Adv Mater, 2009,21(36):3663-3667. doi: 10.1002/adma.v21:36

    84. [84]

      Wu X, Lu G Q, Wang L. Shell-in-Shell TiO2 Hollow Spheres Synthesized by One-Pot Hydrothermal Method for Dye-Sensitized Solar Cell Application[J]. Energy Environ Sci, 2011,4(9):3565-3572. doi: 10.1039/c0ee00727g

    85. [85]

      Hwang S H, Yun J, Jang J. Multi-Shell Porous TiO2 Hollow Nanoparticles for Enhanced Light Harvesting in Dye-Sensitized Solar Cells[J]. Adv Funct Mater, 2014,24(48):7619-7626. doi: 10.1002/adfm.v24.48

    86. [86]

      Dong Z, Lai X, Halpert J E. Accurate Control of Multishelled ZnO Hollow Microspheres for Dye-Sensitized Solar Cells with High Efficiency[J]. Adv Mater, 2012,24(8):1046-1049. doi: 10.1002/adma.201104626

    87. [87]

      Xia W, Mei C, Zeng X. Mesoporous Multi-shelled ZnO Microspheres for the Scattering Layer of Dye Sensitized Solar Cell with a High Efficiency[J]. Appl Phys Lett, 2016,108113902. doi: 10.1063/1.4944532

    88. [88]

      Dong Z, Ren H, Hessel C M. Quintuple-Shelled SnO2 Hollow Microspheres with Superior Light Scattering for High-Performance Dye Sensitized Solar Cells[J]. Adv Mater, 2014,26(6):905-909. doi: 10.1002/adma.v26.6

    89. [89]

      Yang N L. The PrThe Preparation of Nano Composites and Their Applications in Solar Energy Conversion[M]. Springer Berlin Heidelberg, 2017.

    90. [90]

      N L. When Hierarchical Structure Meets the Solar Cell[J]. Sci Bull, 2017,62(4):234-235. doi: 10.1016/j.scib.2017.01.023

    91. [91]

      Du J, Lai X, Yang N. Hierarchically Ordered Macro-Mesoporous TiO2-Graphene Composite Films:Improved Mass Transfer, Reduced Charge Recombination, and Their Enhanced Photocatalytic Activities[J]. ACS Nano, 2011,5(1):590-596. doi: 10.1021/nn102767d

    92. [92]

      Yang Y, Jin Q, Mao Dan. Dually Ordered Porous TiO2-rGO Composites with Controllable Light Absorption Properties for Efficient Solar Energy Conversion[J]. Adv Mater, 2017,29(4)1604795. doi: 10.1002/adma.v29.4

  • 加载中
    1. [1]

      Yikai Wang Xiaolin Jiang Haoming Song Nan Wei Yifan Wang Xinjun Xu Cuihong Li Hao Lu Yahui Liu Zhishan Bo . 氰基修饰的苝二酰亚胺衍生物作为膜厚不敏感型阴极界面材料用于高效有机太阳能电池. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-. doi: 10.3866/PKU.WHXB202406007

    2. [2]

      Jiaxin Su Jiaqi Zhang Shuming Chai Yankun Wang Sibo Wang Yuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-. doi: 10.3866/PKU.WHXB202408012

    3. [3]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    4. [4]

      Yipeng Zhou Chenxin Ran Zhongbin Wu . Metacognitive Enhancement in Diversifying Ideological and Political Education within Graduate Course: A Case Study on “Solar Cell Performance Enhancement Technology”. University Chemistry, 2024, 39(6): 151-159. doi: 10.3866/PKU.DXHX202312096

    5. [5]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    6. [6]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    7. [7]

      Pengyu Dong Yue Jiang Zhengchi Yang Licheng Liu Gu Li Xinyang Wen Zhen Wang Xinbo Shi Guofu Zhou Jun-Ming Liu Jinwei Gao . NbSe2纳米片优化钙钛矿太阳能电池的埋底界面. Acta Physico-Chimica Sinica, 2025, 41(3): 2407025-. doi: 10.3866/PKU.WHXB202407025

    8. [8]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    9. [9]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    10. [10]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    11. [11]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    12. [12]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    13. [13]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    14. [14]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    15. [15]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    16. [16]

      Yu Guo Zhiwei Huang Yuqing Hu Junzhe Li Jie Xu . 钠离子电池中铁基异质结构负极材料的最新研究进展. Acta Physico-Chimica Sinica, 2025, 41(3): 2311015-. doi: 10.3866/PKU.WHXB202311015

    17. [17]

      Pengcheng Yan Peng Wang Jing Huang Zhao Mo Li Xu Yun Chen Yu Zhang Zhichong Qi Hui Xu Henan Li . Engineering Multiple Optimization Strategy on Bismuth Oxyhalide Photoactive Materials for Efficient Photoelectrochemical Applications. Acta Physico-Chimica Sinica, 2025, 41(2): 100014-. doi: 10.3866/PKU.WHXB202309047

    18. [18]

      Wenyan Dan Weijie Li Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060

    19. [19]

      Yanxin Wang Hongjuan Wang Yuren Shi Yunxia Yang . Application of Python for Visualizing in Structural Chemistry Teaching. University Chemistry, 2024, 39(3): 108-117. doi: 10.3866/PKU.DXHX202306005

    20. [20]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

Metrics
  • PDF Downloads(4)
  • Abstract views(601)
  • HTML views(79)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return