Research Progress of Hollow Micro/Nano-Structured Photoanode Materials for Dye-Sensitized Solar Cells
- Corresponding author: YANG Mei, myang@ipe.ac.cn
Citation:
YANG Mei, SHI Zhenling, XU Nan, MAO Dan, WANG Dan. Research Progress of Hollow Micro/Nano-Structured Photoanode Materials for Dye-Sensitized Solar Cells[J]. Chinese Journal of Applied Chemistry,
;2018, 35(8): 902-915.
doi:
10.11944/j.issn.1000-0518.2018.08.180177
Service R F. Is It Time to Shoot for the Sun[J]. Science, 2005,309(5734):548-551. doi: 10.1126/science.309.5734.548
Potocnik J. Renewable Energy Sources and the Realities of Setting an Energy Agenda[J]. Science, 2007,315(5813):810-811. doi: 10.1126/science.1139086
Schiermeier Q, Tollefson J, Scully T. Energy Alternatives:Electricity without Carbon[J]. Nature, 2008,454(7206):816-823. doi: 10.1038/454816a
Hagfeldt A, Boschloo G, Sun L. Dye-Sensitized Solar Cells[J]. Chem Rev, 2010,110(11):6595-6663. doi: 10.1021/cr900356p
O'Regan B, Grätzel M. A Low-Cost, High-Efficient Solar Cell Based on Dye-Sensitized Colloidal TiO2 Films[J]. Nature, 1991,353(6346):737-740. doi: 10.1038/353737a0
Grätzel M. Solar Energy Conversion by Dye-Sensitized Photovoltaic Cells[J]. Inorg Chem, 2005,44(20):6841-6851. doi: 10.1021/ic0508371
Zhang S, Yang X, Numata Y. Highly Efficient Dye-Sensitized Solar Cells:Progress and Future Challenges[J]. Energy Environ Sci, 2013,6(5):1443-1464. doi: 10.1039/c3ee24453a
Chen M, Ye C, Zhou S. Recent Advances in Applications and Performance of Inorganic Hollow Spheres in Devices[J]. Adv Mater, 2013,44(49):5343-5351.
Qi J, Lai X, Wang J. Multi-Shelled Hollow Micro-/Nanostructures[J]. Chem Soc Rev, 2015,44(19):6749-6773. doi: 10.1039/C5CS00344J
Zhou L, Zhuang Z, Zhao H. Intricate Hollow Structures:Controlled Synthesis and Applications in Energy Storage and Conversion[J]. Adv Mater, 2017,29(20)1602914. doi: 10.1002/adma.v29.20
Mishra A, Fischer M K, Bäuerle P. Metal-Free Organic Dyes for Dye-Sensitized Solar Cells:From Structure:Property Relationships to Design Rules[J]. Angew Chem Int Ed, 2009,48(14):2474-2499. doi: 10.1002/anie.v48:14
Chung I, Lee B, He J. All-Solid-State Dye-Sensitized Solar Cells with High Efficiency[J]. Nature, 2012,485(7399):486-489. doi: 10.1038/nature11067
Lee C T, Peng J D, Li C T. Ni3Se4 Hollow Architectures as Catalytic Materials for the Counter Electrodes of Dye-Sensitized Solar Cells[J]. Nano Energy, 2014,10:201-211. doi: 10.1016/j.nanoen.2014.09.017
Grätzel M. Dye-Sensitized Solar Cells[J]. J Photochem Photobiol C, 2003,4:145-153. doi: 10.1016/S1389-5567(03)00026-1
Kakiage K, Aoyama Y, Yano T. Highly-Efficient Dye-Sensitized Solar Cells with Collaborative Sensitization by Silyl-anchor and Carboxy-anchor Dyes[J]. Chem Commun, 2015,51(88)15894. doi: 10.1039/C5CC06759F
Ning Z, Fu Y, Tian H. Improvement of Dye-Sensitized Solar Cells:What We Know and What We Need to Know[J]. Energy Environ Sci, 2010,3(9):1170-1181. doi: 10.1039/c003841e
Mathew S, Yella A, Gao P. Dye-Sensitized Solar Cells with 13% Efficiency Achieved Through the Molecular Engineering of Porphyrin Sensitizers[J]. Nat Chem, 2014(3):242-247.
Yella A, Lee H W, Tsao H N. Porphyrin-Sensitized Solar Cells with Cobalt(Ⅱ/Ⅲ)-based Redox Electrolyte Exceed 12 Percent Efficiency[J]. Science, 2011,334(6056):629-634. doi: 10.1126/science.1209688
Li Z Q, Chen W C, Guo F L. Mesoporous TiO2 Yolk-Shell Microspheres for Dye-Sensitized Solar Cells with a High Efficiency Exceeding 11%[J]. Sci Rep, 2015,514178. doi: 10.1038/srep14178
Wu W Q, Xu Y F, Rao H S. Multistack Integration of Three-Dimensional Hyperbranched Anatase Titania Architectures for High-Efficiency Dye-Sensitized Solar Cells[J]. J Am Chem Soc, 2014,136(17):6437-6445. doi: 10.1021/ja5015635
Koo H J, Kim Y J, Lee Y H. Nano-embossed Hollow Spherical TiO2 as Bifunctional Material for High-Efficiency Dye-Sensitized Solar Cells[J]. Adv Mater, 2008,20(1):195-199. doi: 10.1002/(ISSN)1521-4095
Wang Z S, Kawauchi H, Kashima T. Significant Influence of TiO2 Photoelectrode Morphology on the Energy Conversion Efficiency of N719 Dye-Sensitized Solar Cell[J]. Coord Chem Rev, 2004,248(13):1381-1389.
Bach U, Lupo D, Comte P. Solid-state Dye-Sensitized Mesoporous TiO2 Solar Cells with High Photon-to-Electron Conversion Efficiencies[J]. Nature, 1998,395(6702):583-585. doi: 10.1038/26936
Nazeeruddin M K, Pechy P, Renouard T. Engineering of Efficient Panchromatic Sensitizers for Nanocrystalline TiO2-based Solar Cells[J]. J Am Chem Soc, 2001,123(8):1613-1624. doi: 10.1021/ja003299u
Jose R, Thavasi V, Ramakrishna S. Metal Oxides for Dye-Sensitized Solar Cells[J]. J Am Ceram Soc, 2009,92(2):289-301. doi: 10.1111/jace.2009.92.issue-2
Quintana M, Edvinsson T, Hagfeldt A. Comparison of Dye-Sensitized ZnO and TiO2 Solar Cells:Studies of Charge Transport and Carrier Lifetime[J]. J Phys Chem C, 2007,111(2):1035-1041. doi: 10.1021/jp065948f
Zhang Q, Dandeneau C S, Zhou X. ZnO Nanostructures for Dye-Sensitized Solar Cells[J]. Adv Mater, 2009,21(41):4087-4108. doi: 10.1002/adma.v21:41
Gubbala S, Chakrapani V, Kumar V. Band-edge Engineered Hybrid Structures for Dye-Sensitized Solar Cells based on SnO2 Nanowires[J]. Adv Funct Mater, 2008,18(16):2411-2418. doi: 10.1002/adfm.v18:16
Chen J, Li C, Xu F. Hollow SnO2 Microspheres for High-Efficiency Bilayered Dye Sensitized Solar Cell[J]. RSC Adv, 2012,2(19):7384-7387. doi: 10.1039/c2ra20909h
Sayama K, Sugihara H, Arakawa H. Photoelectrochemical Properties of a Porous Nb2O5 Electrode Sensitized by a Ruthenium Dye[J]. Chem Mater, 1998,10(12):3825-3832. doi: 10.1021/cm980111l
Law M, Greene L E, Johnson J C. Nanowire Dye-Sensitized Solar Cells[J]. Nat Mater, 2005,4:455-459. doi: 10.1038/nmat1387
Deepak T G, Anjusree G S, Thomas S. A Review on Materials for Light Scattering in Dye-sensitized Solar Cells[J]. RSC Adv, 2014,417615. doi: 10.1039/C4RA01308E
Wang Y F, Li K N, Xu Y F. Hydrothermal Fabrication of Hierarchically Macroporous Zn2SnO4 for Highly Efficient Dye-Sensitized Solar Cells[J]. Nanoscale, 2013,5:5940-5948. doi: 10.1039/c3nr01133j
Xu Y, Schoonen M A A. The Absolute Energy Positions of Conduction and Valence Bands of Selected Semiconducting Minerals[J]. Am Mineral, 2000,85(3/4):543-556.
Concina I, Vomiero A. Metal Oxide Semiconductors for Dye-and Quantum-Dot-Sensitized Solar Cells[J]. Small, 2015,11(15):1744-1774. doi: 10.1002/smll.201402334
Chen H Y, Kuang D B, Su C Y. Hierarchically Micro/nanostructured Photoanode Materials for Dye-Sensitized Solar Cells[J]. J Mater Chem, 2012,22(31):15475-15489. doi: 10.1039/c2jm32402d
Hore S, Nitz P, Vetter C. Scattering Spherical Voids in Nanocrystalline TiO2-enhancement of Efficiency in Dye-Sensitized Solar Cells[J]. Chem Commun, 2005,15(15):2011-2013.
Yang S C, Yang D J, Kim J. Hollow TiO2 Hemispheres Obtained by Colloidal Templating for Application in Dye-Sensitized Solar Cells[J]. Adv Mater, 2008,20(5):1059-1064. doi: 10.1002/(ISSN)1521-4095
Khan J, Gu J, Meng Y. Anatase TiO2 Single Crystal Hollow Nanoparticles:Their Facile Synthesis and High-performance in Dye-Sensitized Solar Cells[J]. CrystEngComm, 2017,19:325-334. doi: 10.1039/C6CE02062C
Pan H, Qian J, Cui Y. Hollow Anatase TiO2 Porous Microspheres with V-Shaped Channels and Exposed (101) Facets:Anisotropic Etching and Photovoltaic Properties[J]. J Mater Chem, 2012,22(13):6002-6009. doi: 10.1039/c2jm15925b
Wu X, Lu G Q, Wang L. Dual-Functional Upconverter-Doped TiO2 Hollow Shells for Light Scattering and Near-Infrared Sunlight Harvesting in Dye-Sensitized Solar Cells[J]. Adv Energy Mater, 2013,3(6):704-707. doi: 10.1002/aenm.201200933
Han G, Wang M, Li D. Novel Upconversion Er, Yb-CeO2 Hollow Spheres as Scattering Layer Materials for Efficient Dye-sensitized Solar Cells[J]. Sol Energy Mater Sol Cells, 2017,160:54-59. doi: 10.1016/j.solmat.2016.10.021
Li Y Y, Wang J G, Liu X R. Au/TiO2 Hollow Spheres with Synergistic Effect of Plasmonic Enhancement and Light Scattering for Improved Dye-Sensitized Solar Cells[J]. ACS Appl Mater Interfaces, 2017,9(37):31691-31698. doi: 10.1021/acsami.7b04624
Yun J, Hwang S H, Jang J. Fabrication of Au@Ag Core/Shell Nanoparticles Decorated TiO2 Hollow Structure for Efficient Light-Harvesting in Dye-Sensitized Solar Cells[J]. ACS Appl Mater Interfaces, 2015,7(3):2055-2063. doi: 10.1021/am508065n
Lü X, Huang F, Mou X. A General Preparation Strategy for Hybrid TiO2 Hierarchical Spheres and Their Enhanced Solar Energy Utilization Efficiency[J]. Adv Mater, 2010,22(33):3719-3722. doi: 10.1002/adma.201001008
He C X, Lei B X, Wang Y F. Sonochemical Preparation of Hierarchical ZnO Hollow Spheres for Efficient Dye-Sensitized Solar Cells[J]. Chem Eur J, 2010,16(29):8757-8761. doi: 10.1002/chem.201000264
Wang G, Zhu X, Yu J. Bilayer Hollow/Spindle-like Anatase TiO2 Photoanode for High Efficiency Dye-Sensitized Solar Cells[J]. J Power Sources, 2015,278:344-351. doi: 10.1016/j.jpowsour.2014.12.091
Zhao L, Li J, Shi Y. Double Light-scattering Layer Film based on TiO2 Hollow Spheres and TiO2 Nanosheets:Improved Efficiency in Dye-Sensitized Solar Cells[J]. J Alloys Compd, 2013,575(20):168-173.
Chavaa R K, Lee W M, Oh S Y. Improvement in Light Harvesting and Device Performance of Dye Sensitized Solar Cells Using Electrophoretic Deposited Hollow TiO2 NPs Scattering Layer[J]. Sol Energy Mater Sol Cells, 2017,161:255-262. doi: 10.1016/j.solmat.2016.11.037
Yu J, Li Qn, Shu Z. Dye-sensitized Solar Cells based on Double-layered TiO2 Composite Films and Enhanced Photovoltaic Performance[J]. Electrochim Acta, 2011,56(18):6293-6298. doi: 10.1016/j.electacta.2011.05.045
Zhang Y, Zhang J, Wang P. Anatase TiO2 Hollow Spheres Embedded TiO2 Nanocrystalline Photoanode for Dye-Sensitized Solar Cells[J]. Mater Chem Phys, 2010,123(2/3):595-600.
Pang H, Yang H, Guo C X. Nanoparticle Self-assembled Hollow TiO2 Spheres with well Matching Visible Light Scattering for High Performance Dye-Sensitized Solar Cells[J]. Chem Commun, 2012,48(70):8832-8834. doi: 10.1039/c2cc34355j
Dadgostar S, Tajabadi F, Taghavinia N. Mesoporous Submicrometer TiO2 Hollow Spheres as Scatterers in Dye-Sensitized Solar Cells[J]. ACS Appl Mater Interfaces, 2012,4(6):2964-2968. doi: 10.1021/am300329p
Yu J, Fan J, Zhao L. Dye-Sensitized Solar Cells Based on Hollow Anatase TiO2 Spheres Prepared by Self-transformation Method[J]. Electrochim Acta, 2010,55(3):597-602. doi: 10.1016/j.electacta.2009.09.021
Niu L, Zhang Q, Liu J. TiO2 Nanoparticles Embedded in Hollow Cube with Highly Exposed {001} Facets:Facile Synthesis and Photovoltaic Applications[J]. J Alloys Compd, 2016,656:863-870. doi: 10.1016/j.jallcom.2015.10.039
Feng J, Hong Y, Zhang J. Novel Core-Shell TiO2 Microsphere Scattering Layer for Dye-Sensitized Solar Cells[J]. J Mater Chem A, 2014,2(5):1502-1508. doi: 10.1039/C3TA13523C
Bai J, Sun X, Han G. Double-shell CeO2@TiO2 Hollow Spheres Composites with Enhanced Light Harvesting and Electron Transfer in Dye-Sensitized Solar Cells[J]. J Alloys Compd, 2017,22:864-871.
Kay A, Grätzel M. Dye-Sensitized Core-Shell Nanocrystals:Improved Efficiency of Mesoporous Tin Oxide Electrodes Coated with a Thin Layer of an Insulating Oxide[J]. Chem Mater, 2002,14(7):2930-2935. doi: 10.1021/cm0115968
Xie F, Li Y, Dou J. Facile Synthesis of SnO2 Coated Urchin-like TiO2 Hollow Microspheres as Efficient Scattering Layer for Dye-Sensitized Solar Cells[J]. J Power Sources, 2016,336:143-149. doi: 10.1016/j.jpowsour.2016.10.061
Du J, Qi J, Wang D. Facile Synthesis of Au@TiO2 Core-Shell Hollow Spheres for Dye-Sensitized Solar Cells with Remarkably Improved Efficiency[J]. Energy Environ Sci, 2012,5(5):6914-6918. doi: 10.1039/c2ee21264a
Thapa A, Zai J, Elbohy H. TiO2 Coated Urchin-like SnO2 Microspheres for Efficient Dye-Sensitized Solar Cells[J]. Nano Research, 2014,7(8):1154-1163. doi: 10.1007/s12274-014-0478-z
Wu W Q, Xu Y F, Rao H S. Constructing 3D Branched Nanowire Coated Macroporous Metal Oxide Electrodes with Homogeneous or Heterogeneous Compositions for Efficient Solar Cells[J]. Angew Chem Int Ed, 2014,53(19):4816-4821. doi: 10.1002/anie.201402371
Pan J H, Xing Wang Z, Huang Q. Large-scale Synthesis of Urchin-like Mesoporous TiO2 Hollow Spheres by Targeted Etching and Their Photoelectrochemical Properties[J]. Adv Funct Mater, 2014,24(1):95-104. doi: 10.1002/adfm.v24.1
Wang H, Li B, Gao J. SnO2 Hollow Nanospheres Enclosed by Single Crystalline Nanoparticles for Highly Efficient Dye-Sensitized Solar Cells[J]. CrystEngComm, 2012,14(16):5177-5181. doi: 10.1039/c2ce06531b
Ahn S H, Kim D J, Chi W S. Hierarchical Double-Shell Nanostructures of TiO2 Nanosheets on SnO2 Hollow Spheres for High-Efficiency, Solid-State, Dye-Sensitized Solar Cells[J]. Adv Funct Mater, 2014,24(32):5037-5044. doi: 10.1002/adfm.v24.32
Wang X, Feng J, Bai Y. Synthesis, Properties, and Applications of Hollow Micro-/Nanostructures[J]. Chem Rev, 2016,116(18):10983-11060. doi: 10.1021/acs.chemrev.5b00731
Wang J, Tang H, Wang H. Multi-shelled Hollow Micro-/Nanostructures:Promising Platforms for Lithium-Ion Batteries[J]. Mater Chem Front, 2017,1(3):414-430. doi: 10.1039/C6QM00273K
Xu H, Wang W. Template Synthesis of Multishelled Cu2O Hollow Spheres with a Single-Crystalline Shell Wall[J]. Angew Chem Int Ed, 2007,46(9):1489-1492. doi: 10.1002/(ISSN)1521-3773
Zhang H, Zhu Q, Zhang Y. One-Pot Synthesis and Hierarchical Assembly of Hollow Cu2O Microspheres with Nanocrystals-Composed Porous Multishell and Their Gas-Sensing Properties[J]. Adv Funct Mater, 2007,17(15):2766-2771. doi: 10.1002/(ISSN)1616-3028
Wang X, Wu X L, Guo Y G. Synthesis and Lithium Storage Properties of Co3O4 Nanosheet-Assembled Multishelled Hollow Spheres[J]. Adv Funct Mater, 2010,20(10):1680-1686. doi: 10.1002/adfm.v20:10
Liu J, Hartono S B, Jin Y G. A Facile Vesicle Template Route to Multi-shelled Mesoporous Silica Hollow Nanospheres[J]. J Mater Chem, 2010,20(22):4595-4601. doi: 10.1039/b925201k
Xi G, Yan Y, Ma Q. Synthesis of Multiple-Shell WO3 Hollow Spheres by a Binary Carbonaceous Template Route and Their Applications in Visible-Light Photocatalysis[J]. Chem Eur J, 2012,18(44):13949-13953. doi: 10.1002/chem.v18.44
Lai X Y, Li J, Korgel B A. General Synthesis and Gas-Sensing Properties of Multiple-Shell Metal Oxide Hollow Microspheres[J]. Angew Chem Int Ed, 2011,50(12):2738-2741. doi: 10.1002/anie.201004900
Li H, Ma H, Yang M. Highly Controlled Synthesis of Multi-shelled NiO Hollow Microspheres for Enhanced Lithium Storage Properties[J]. Mater Res Bull, 2017,87:224-229. doi: 10.1016/j.materresbull.2016.12.005
Ren H, Sun J, Yu R. Controllable Synthesis of Mesostructures from TiO2 Hollow to Porous Nanospheres with Superior Rate Performance for Lithium Ion Batteries[J]. Chem Sci, 2016,7(1):793-798. doi: 10.1039/C5SC03203B
Wang J, Tang H, Zhang L. Multi-shelled Metal Oxides Prepared via an Anion-Adsorption Mechanism for Lithium-Ion Batteries[J]. Nat Energy, 2016,116050. doi: 10.1038/nenergy.2016.50
Xu S, Hessel C, Ren H. α-Fe2O3 Multi-shelled Hollow Microspheres for Lithium Ion Battery Anodes with Superior Capacity and Charge Retention[J]. Energy Environ Sci, 2013,7(2):632-637.
Wang J, Yang N, Tang H. Accurate Control of Multi-shelled Co3O4 Hollow Microspheres for High-Performance Anode Materials in Lithium Ion Batteries[J]. Angew Chem Int Ed, 2013,52(25):6417-6420. doi: 10.1002/anie.201301622
Ren H, Yu R, Wang J. Multi-shelled TiO2 Hollow Microspheres as Anodes with Superior Reversible Capacity for Lithium Ion Batteries[J]. Nano Lett, 2014,14(11):6679-6684. doi: 10.1021/nl503378a
Wang J, Tang H, Ren H. pH-Regulated Synthesis of Multi-Shelled Manganese Oxide Hollow Microspheres as Supercapacitor Electrodes Using Carbonaceous Microspheres as Templates[J]. Adv Sci, 2014,1(1):1719-1720.
Zhao X, Yu R, Tang H. Formation of Septuple-Shelled (Co2/3Mn1/3)(Co5/6Mn1/6)2O4 Hollow Spheres as Electrode Material for Alkaline Rechargeable Battery[J]. Adv Mater, 2017,29(34)1700550. doi: 10.1002/adma.v29.34
Lai X, Halperta J E, Wang D. Recent advances in Micro-/Nano-structured Hollow Spheres for Energy Applications:From Simple to Complex Systems[J]. Energy Environ Sci, 2012,5(2):5604-5618. doi: 10.1039/C1EE02426D
Qian J, Liu P, Xiao Y. TiO2-Coated Multilayered SnO2 Hollow Microspheres for Dye-Sensitized Solar Cells[J]. Adv Mater, 2009,21(36):3663-3667. doi: 10.1002/adma.v21:36
Wu X, Lu G Q, Wang L. Shell-in-Shell TiO2 Hollow Spheres Synthesized by One-Pot Hydrothermal Method for Dye-Sensitized Solar Cell Application[J]. Energy Environ Sci, 2011,4(9):3565-3572. doi: 10.1039/c0ee00727g
Hwang S H, Yun J, Jang J. Multi-Shell Porous TiO2 Hollow Nanoparticles for Enhanced Light Harvesting in Dye-Sensitized Solar Cells[J]. Adv Funct Mater, 2014,24(48):7619-7626. doi: 10.1002/adfm.v24.48
Dong Z, Lai X, Halpert J E. Accurate Control of Multishelled ZnO Hollow Microspheres for Dye-Sensitized Solar Cells with High Efficiency[J]. Adv Mater, 2012,24(8):1046-1049. doi: 10.1002/adma.201104626
Xia W, Mei C, Zeng X. Mesoporous Multi-shelled ZnO Microspheres for the Scattering Layer of Dye Sensitized Solar Cell with a High Efficiency[J]. Appl Phys Lett, 2016,108113902. doi: 10.1063/1.4944532
Dong Z, Ren H, Hessel C M. Quintuple-Shelled SnO2 Hollow Microspheres with Superior Light Scattering for High-Performance Dye Sensitized Solar Cells[J]. Adv Mater, 2014,26(6):905-909. doi: 10.1002/adma.v26.6
Yang N L. The PrThe Preparation of Nano Composites and Their Applications in Solar Energy Conversion[M]. Springer Berlin Heidelberg, 2017.
N L. When Hierarchical Structure Meets the Solar Cell[J]. Sci Bull, 2017,62(4):234-235. doi: 10.1016/j.scib.2017.01.023
Du J, Lai X, Yang N. Hierarchically Ordered Macro-Mesoporous TiO2-Graphene Composite Films:Improved Mass Transfer, Reduced Charge Recombination, and Their Enhanced Photocatalytic Activities[J]. ACS Nano, 2011,5(1):590-596. doi: 10.1021/nn102767d
Yang Y, Jin Q, Mao Dan. Dually Ordered Porous TiO2-rGO Composites with Controllable Light Absorption Properties for Efficient Solar Energy Conversion[J]. Adv Mater, 2017,29(4)1604795. doi: 10.1002/adma.v29.4
Yikai Wang , Xiaolin Jiang , Haoming Song , Nan Wei , Yifan Wang , Xinjun Xu , Cuihong Li , Hao Lu , Yahui Liu , Zhishan Bo . 氰基修饰的苝二酰亚胺衍生物作为膜厚不敏感型阴极界面材料用于高效有机太阳能电池. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-. doi: 10.3866/PKU.WHXB202406007
Jiaxin Su , Jiaqi Zhang , Shuming Chai , Yankun Wang , Sibo Wang , Yuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-. doi: 10.3866/PKU.WHXB202408012
Yuanyin Cui , Jinfeng Zhang , Hailiang Chu , Lixian Sun , Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016
Yipeng Zhou , Chenxin Ran , Zhongbin Wu . Metacognitive Enhancement in Diversifying Ideological and Political Education within Graduate Course: A Case Study on “Solar Cell Performance Enhancement Technology”. University Chemistry, 2024, 39(6): 151-159. doi: 10.3866/PKU.DXHX202312096
Qi Li , Pingan Li , Zetong Liu , Jiahui Zhang , Hao Zhang , Weilai Yu , Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030
Yixuan Gao , Lingxing Zan , Wenlin Zhang , Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091
Pengyu Dong , Yue Jiang , Zhengchi Yang , Licheng Liu , Gu Li , Xinyang Wen , Zhen Wang , Xinbo Shi , Guofu Zhou , Jun-Ming Liu , Jinwei Gao . NbSe2纳米片优化钙钛矿太阳能电池的埋底界面. Acta Physico-Chimica Sinica, 2025, 41(3): 2407025-. doi: 10.3866/PKU.WHXB202407025
Zeyuan WANG , Songzhi ZHENG , Hao LI , Jingbo WENG , Wei WANG , Yang WANG , Weihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021
Jizhou Liu , Chenbin Ai , Chenrui Hu , Bei Cheng , Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
Zizheng LU , Wanyi SU , Qin SHI , Honghui PAN , Chuanqi ZHAO , Chengfeng HUANG , Jinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225
Xiufang Wang , Donglin Zhao , Kehua Zhang , Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025
Xin MA , Ya SUN , Na SUN , Qian KANG , Jiajia ZHANG , Ruitao ZHU , Xiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357
Peng XU , Shasha WANG , Nannan CHEN , Ao WANG , Dongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239
Yonghui ZHOU , Rujun HUANG , Dongchao YAO , Aiwei ZHANG , Yuhang SUN , Zhujun CHEN , Baisong ZHU , Youxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373
Yu Guo , Zhiwei Huang , Yuqing Hu , Junzhe Li , Jie Xu . 钠离子电池中铁基异质结构负极材料的最新研究进展. Acta Physico-Chimica Sinica, 2025, 41(3): 2311015-. doi: 10.3866/PKU.WHXB202311015
Pengcheng Yan , Peng Wang , Jing Huang , Zhao Mo , Li Xu , Yun Chen , Yu Zhang , Zhichong Qi , Hui Xu , Henan Li . Engineering Multiple Optimization Strategy on Bismuth Oxyhalide Photoactive Materials for Efficient Photoelectrochemical Applications. Acta Physico-Chimica Sinica, 2025, 41(2): 100014-. doi: 10.3866/PKU.WHXB202309047
Wenyan Dan , Weijie Li , Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060
Yanxin Wang , Hongjuan Wang , Yuren Shi , Yunxia Yang . Application of Python for Visualizing in Structural Chemistry Teaching. University Chemistry, 2024, 39(3): 108-117. doi: 10.3866/PKU.DXHX202306005
Wei HE , Jing XI , Tianpei HE , Na CHEN , Quan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364
(a)the light scattering effect and upconversion function of UC-TiO2 based photoanode; (b)energy-level diagram of Er3+/Yb3+
a)single shelled; b)double shelled; c)triple shelled; d)quadruple shelled; e)double shelled(with close double shells in the exterior); f)triple shelled (with close double shells in the exterior and smaller core); g)quadruple shelled(with close double shells in the exterior and double-shelled hollow core)