Citation: LI Fei, XIA Zhiguo. Rare Earth Doped Phosphors and Inorganic Quantum Dots for Solid State Lighting: Opportunity and Challenge[J]. Chinese Journal of Applied Chemistry, ;2018, 35(8): 859-870. doi: 10.11944/j.issn.1000-0518.2018.08.180152 shu

Rare Earth Doped Phosphors and Inorganic Quantum Dots for Solid State Lighting: Opportunity and Challenge

  • Corresponding author: XIA Zhiguo, xiazg@ustb.edu.cn
  • Received Date: 4 May 2018
    Revised Date: 26 June 2018
    Accepted Date: 26 June 2018

    Fund Project: the National Natural Science Foundation of China 51722202Supported by the National Natural Science Foundation of China(No.51722202)

Figures(6)

  • White light-emitting diode(w-LED) has the advantages of long service life, environmental protection, energy saving and high safety, which has basically replaced traditional incandescent and fluorescent lamp after development of more than ten years and is considered to be the new generation lighting source. As the core material of w-LED, fluorescence conversion material directly affects the performance of the device. Therefore, the development of high-performance fluorescent conversion materials is of great importance to further enhance the performance of w-LED devices. This review mainly describes the rare-earth phosphors and inorganic quantum dots which used in solid-state lighting device. We summarize the progress of the structural design, composition and photoluminescent tuning of rare-earth phosphors and typically introduce the design and photoluminescence tuning of chalcogenide quantum dots represented by ZnS, perovskite quantum dots and carbon dots used in w-LED. Finally, the future development including the opportunity and challenge of the fluorescent conversion materials for solid state lighting is prospected.
  • 加载中
    1. [1]

      Nakamura S, Mukai T, Senoh M. High-Brightness InGaN/AlGaN Double-Heterostructure Blue-Green-Light-Emitting Diodes[J]. J Appl Phys, 1994,76(12):8189-8191. doi: 10.1063/1.357872

    2. [2]

      Li G, Tian Y, Zhao Y. Recent Progress in Luminescence Tuning of Ce3+ and Eu2+-Activated Phosphors for pc-WLEDs[J]. Chem Soc Rev, 2015,44(23):8688-8713. doi: 10.1039/C4CS00446A

    3. [3]

      Xia Z, Xu Z, Chen M. Recent Developments in the New Inorganic Solid-state LED Phosphors[J]. Dalton Trans, 2016,45(28):11214-11232. doi: 10.1039/C6DT01230B

    4. [4]

      Dorenbos P. A Review on How Lanthanide Impurity Levels Change with Chemistry and Structure of Inorganic Compounds[J]. ECS J Solid State SC, 2013,2(2):R3001-R3011. doi: 10.1149/2.001302jss

    5. [5]

      Xia Z, Liu Q. Progress in Discovery and Structural Design of Color Conversion Phosphors for LEDs[J]. Prog Mater Sci, 2016,84:59-117. doi: 10.1016/j.pmatsci.2016.09.007

    6. [6]

      George N C, Denault K A, Seshadri R. Phosphors for Solid-State White Lighting[J]. Ann Rev Mater Res, 2013,43(1):481-501. doi: 10.1146/annurev-matsci-073012-125702

    7. [7]

      Narendran N, Gu Y. Life of LED-Based White Light Sources[J]. J Disp Technol, 2005,1(1):167-171. doi: 10.1109/JDT.2005.852510

    8. [8]

      Pimputkar S, Speck J S, DenBaars S P. Prospects for LED Lighting[J]. Nat Photonics, 2009,3(4):180-182. doi: 10.1038/nphoton.2009.32

    9. [9]

      Rohwer L S, Srivastava A M. Development of Phosphors for LEDs[J]. Electrochem Soc Interface, 2003,12(2):36-39.  

    10. [10]

      Kim Y H, Viswanath N S M, Unithrattil S. Review-Phosphor Plates for High-Power LED Applications:Challenges and Opportunities Toward Perfect Lighting[J]. ECS J Solid State SC, 2017,7(1):R3134-R3147.

    11. [11]

      Katelnikovas A, Plewa J, Dutczak D. Synthesis and Optical Properties of Green Emitting Garnet Phosphors for Phosphor-Converted Light Emitting Diodes[J]. Opt Mater, 2012,34(7):1195-1201. doi: 10.1016/j.optmat.2012.01.034

    12. [12]

      Akai T, Shigeiwa M, Okamoto K, et al XAFS Analysis of Local Structure Around Ce in Ca3Sc2Si3O12: Ce Phosphor for White LEDs[C]//AIP Conference Proceedings, AIP: 2007: 389-391.

    13. [13]

      Elliott J. Recent Progress in the Chemistry, Crystal Chemistry and Structure of the Apatites[J]. Calcif Tissue Int, 1969,3(1):293-307. doi: 10.1007/BF02058672

    14. [14]

      White T J, Dong Z. Structural Derivation and Crystal Chemistry of Apatites[J]. Acta Crystallogr B, 2003,59(1):1-16. doi: 10.1107/S0108768102019894

    15. [15]

      Kusaka K, Hagiya K, Ohmasa M. Determination of Structures of Ca2CoSi2O7, Ca2MgSi2O7, and Ca2(Mg0.55Fe0.45)Si2O7 in Incommensurate and Normal Phases and Observation of Diffuse Streaks at High Temperature[J]. Phys Chem Miner, 2001,28(3):150-166. doi: 10.1007/s002690000147

    16. [16]

      Zhang M, Wang J, Ding W. Luminescence Properties of M2MgSi2O7:Eu2+(M=Ca, Sr) Phosphors and Their Effects on Yellow and Blue LEDs for Solid-State Lighting[J]. Opt Mater, 2007,30(4):571-578. doi: 10.1016/j.optmat.2007.01.008

    17. [17]

      Zhang Q, Wang J, Zhang M. Tunable Bluish Green to Yellowish Green Ca2(1-x)Sr2xAl2SiO7:Eu2+ Phosphors for Potential LED Application[J]. Appl Phys B, 2008,92(2):195-198. doi: 10.1007/s00340-008-3089-0

    18. [18]

      Singh S, Khatkar S, Boora P. Structural and Luminescent Properties of Eu3+-Doped GdSrAl3O7 Nanophosphor[J]. J Mater Sci, 2014,49(14):4773-4779. doi: 10.1007/s10853-014-8176-5

    19. [19]

      Zhang X, Zhang J, Xu J. Luminescent Properties of Eu2+-Activated SrLaGa3S6O Phosphor[J]. J Alloy Compd, 2005,389(1):247-251.  

    20. [20]

      Aleksovska S, Petruševski V M, Pejov L. Crystal Structures of Members in Isostructural Series:Prediction of the Crystal Structure of Cs2MnO4-K2SO4 Type Isomorph[J]. Croat Chem Acta, 1997,70(4):1009-1019.  

    21. [21]

      Müller-Buschbaum H. The Crystal Chemistry of AM2O4 Oxometallates[J]. J Alloy Compd, 2003,349(1):49-104.  

    22. [22]

      Denault K A, Brgoch J, Gaultois M W. Consequences of Optimal Bond Valence on Structural Rigidity and Improved Luminescence Properties in SrxBa2xSiO4:Eu2+ Orthosilicate Phosphors[J]. Chem Mater, 2014,26(7):2275-2282. doi: 10.1021/cm500116u

    23. [23]

      Marchuk A, Schultz P, Hoch C. M2PO3N(M=Ca, Sr):Ortho-Oxonitridophosphates with β-K2SO4 Structure Type[J]. Inorg Chem, 2015,55(2):974-982.

    24. [24]

      Black A P, Denault K A, Oró-Solé J. Red Luminescence and Ferromagnetism in Europium Oxynitridosilicates with a β-K2SO4 Structure[J]. Chem Commun, 2015,51(11):2166-2169. doi: 10.1039/C4CC08548E

    25. [25]

      Zhang S, Nakai Y, Tsuboi T. The Thermal Stabilities of Luminescence and Microstructures of Eu2+-doped KBaPO4 and NaSrPO4with β-K2SO4 Type Structure[J]. Inorg Chem, 2011,50(7):2897-2904. doi: 10.1021/ic102504x

    26. [26]

      Lim M A, Park J K, Kim C H. Luminescence Characteristics of Green Light Emitting Ba2SiO4:Eu2+ Phosphor[J]. J Mater Sci Lett, 2003,22(19):1351-1353. doi: 10.1023/A:1025739412154

    27. [27]

      Tang Y S, Hu S F, Lin C C. Thermally Stable Luminescence of KSrPO4:Eu2+ Phosphor for White Light UV Light-Emitting Diodes[J]. Appl Phys Lett, 2007,90(15)151108. doi: 10.1063/1.2721846

    28. [28]

      Zhang M, Wang J, Zhang Q. Optical Properties of Ba2SiO4:Eu2+ Phosphor for Green Light-Emitting Diode(LED)[J]. Mater Res Bull, 2007,42(1):33-39. doi: 10.1016/j.materresbull.2006.05.011

    29. [29]

      Lin C C, Xiao Z R, Guo G Y. Versatile Phosphate Phosphors ABPO4 in White Light-Emitting Diodes:Collocated Characteristic Analysis and Theoretical Calculations[J]. J Am Chem Soc, 2010,132(9):3020-3028. doi: 10.1021/ja9092456

    30. [30]

      Ji H, Huang Z, Xia Z. Discovery of New Solid Solution Phosphors via Cation Substitution-Dependent Phase Transition in M3(PO4)2:Eu2+(M=Ca/Sr/Ba) Quasi-Binary Sets[J]. J Phys Chem C, 2015,119(4):2038-2045. doi: 10.1021/jp509743r

    31. [31]

      Ye N, Zeng W, Jiang J. New Nonlinear Optical Crystal K2Al2B2O7[J]. JOSA B, 2000,17(5):764-768. doi: 10.1364/JOSAB.17.000764

    32. [32]

      Okatov S, Ivanovskii A. Chemical Bonding and Atomic Ordering Effects in β-SiAlON[J]. Int J Inorg Mater, 2001,3(7):923-930. doi: 10.1016/S1466-6049(01)00087-3

    33. [33]

      Wang C, Xin S Y, Wang X C. Double Substitution Induced Tunable Photoluminescence in the Sr2Si5N8:Eu Phosphor Lattice[J]. New J Chem, 2015,39(9):6958-6964. doi: 10.1039/C5NJ00997A

    34. [34]

      Huang Y, Gan J, Zhu R. Structural Phase Formation and Tunable Luminescence of Eu2+-Activated Apatite-type (Ca, Sr, Ba)5(PO4)2(SiO4)[J]. J Electrochem Soc, 2011,158(11):J334-J340. doi: 10.1149/2.026111jes

    35. [35]

      Wang T, Zheng P, Liu X. Effects of Replacement of AlO+ for SiN+ on the Structure and Optical Properties of Sr2Si5N8:Eu2+ Phosphors[J]. J Lumin, 2014,147:173-178. doi: 10.1016/j.jlumin.2013.11.016

    36. [36]

      Xia Z, Ma C, Molokeev M S. Chemical Unit Cosubstitution and Tuning of Photoluminescence in the Ca2(Al1-xMgx)(Al1-xSi1+x)O7:Eu2+ Phosphor[J]. J Am Chem Soc, 2015,137(39):12494-12497. doi: 10.1021/jacs.5b08315

    37. [37]

      Xia Z, Molokeev M S, Im W B. Crystal Structure and Photoluminescence Evolution of La5(Si2+xB1-x)(O13-xNx):Ce3+ Solid Solution Phosphors[J]. J Phys Chem C, 2015,119(17):9488-9495. doi: 10.1021/acs.jpcc.5b01211

    38. [38]

      Zhou D, Liu D, Pan G. Cerium and Ytterbium Codoped Halide Perovskite Quantum Dots:A Novel and Efficient Downconverter for Improving the Performance of Silicon Solar Cells[J]. Adv Mater, 2017,29(42)1704149. doi: 10.1002/adma.201704149

    39. [39]

      Tian G, Gu Z, Zhou L. Mn2+ Dopant-Controlled Synthesis of NaYF4:Yb/Er Upconversion Nanoparticles for in Vivo Imaging and Drug Delivery[J]. Adv Mater, 2012,24(9):1226-1231. doi: 10.1002/adma.v24.9

    40. [40]

      Wood V, Panzer M, Halpert J. Selection of Metal Oxide Charge Transport Layers for Colloidal Quantum Dot LEDs[J]. ACS Nano, 2009,3(11):3581-3586. doi: 10.1021/nn901074r

    41. [41]

      Rafipoor M, Dupont D, Tornatzky H. Strain Engineering in InP/(Zn, Cd)Se Core/Shell Quantum Dots[J]. Chem Mater, 2018.  

    42. [42]

      Tan R, Yuan Y, Nagaoka Y. Monodisperse Hexagonal Pyramidal and Bipyramidal Wurtzite CdSe-CdS Core-Shell Nanocrystals[J]. Chem Mater, 2017,29(9):4097-4108. doi: 10.1021/acs.chemmater.7b00968

    43. [43]

      Zou H, Liu M, Zhou D. Employing CdSexTe1-x Alloyed Quantum Dots to Avoid the Temperature-Dependent Emission Shift of Light-Emitting Diodes[J]. J Phys Chem C, 2017,121(9):5313-5323. doi: 10.1021/acs.jpcc.6b12129

    44. [44]

      Zeng R, Zhang T, Dai G. Highly Emissive, Color-Tunable, Phosphine-Free Mn:ZnSe/ZnS Core/Shell and Mn:ZnSeS Shell-Alloyed Doped Nanocrystals[J]. J Phys Chem C, 2011,115(7):3005-3010. doi: 10.1021/jp111288h

    45. [45]

      Akkerman Q A, D'Innocenzo V, Accornero S. Tuning the Optical Properties of Cesium Lead Halide Perovskite Nanocrystals by Anion Exchange Reactions[J]. J Am Chem Soc, 2015,137(32):10276-10281. doi: 10.1021/jacs.5b05602

    46. [46]

      Zhang F, Zhong H, Chen C. Brightly Luminescent and Color-Tunable Colloidal CH3NH3PbX3(X=Br, I, Cl) Quantum Dots:Potential Alternatives for Display Technology[J]. ACS Nano, 2015,9(4):4533-4542. doi: 10.1021/acsnano.5b01154

    47. [47]

      Zhang X, Zhang Y, Wang Y. Color-Switchable Electroluminescence of Carbon Dot Light-Emitting Diodes[J]. ACS Nano, 2013,7(12):11234-11241. doi: 10.1021/nn405017q

    48. [48]

      Chen D, Gao H, Chen X. Excitation-Independent Dual-Color Carbon Dots:Surface-State Controlling and Solid-State Lighting[J]. ACS Photonics, 2017,4(9):2352-2358. doi: 10.1021/acsphotonics.7b00675

    49. [49]

      Kershaw S V, Abdelazim N M, Zhao Y. Investigation of the Exchange Kinetics and Surface Recovery of CdxHg1-xTe Quantum Dots During Cation Exchange Using a Microfluidic Flow Reactor[J]. Chem Mater, 2017,29(7):2756-2768. doi: 10.1021/acs.chemmater.6b04544

    50. [50]

      Chen D, Chen X, Wan Z. Full-Spectral Fine-Tuning Visible Emissions from Cation Hybrid Cs1-mFAmPbX3(X=Cl, Br, and I, 0 < m < 1) Quantum Dots[J]. ACS Appl Mater Interfaces, 2017,9(24):20671-20678. doi: 10.1021/acsami.7b05429

    51. [51]

      Shen H, Wang H, Li X. Phosphine-Free Synthesis of High Quality ZnSe, ZnSe/ZnS, and Cu-, Mn-Doped ZnSe Nanocrystals[J]. Dalton T, 2009(47):10534-10540. doi: 10.1039/b917674h

    52. [52]

      Cao L, Zhang J, Ren S. Luminescence Enhancement of Core-Shell ZnS:Mn/ZnS Nanoparticles[J]. Appl Phys Lett, 2002,80(23):4300-4302. doi: 10.1063/1.1483113

    53. [53]

      Corrado C, Cooper J K, Hawker M. Synthesis and Characterization of Organically Soluble Cu-doped ZnS Nanocrystals with Br Co-Activator[J]. J Phys Chem C, 2011,115(30):14559-14570. doi: 10.1021/jp202734n

    54. [54]

      Ma L, Chen W. ZnS:Cu, Co Water-Soluble Afterglow Nanoparticles:Synthesis, Luminescence and Potential Applications[J]. Nanotechnology, 2010,21(38)385604. doi: 10.1088/0957-4484/21/38/385604

    55. [55]

      Li F, Xia Z, Liu Q. Controllable Synthesis and Optical Properties of ZnS:Mn2+/ZnS/ZnS:Cu2+/ZnS Core/Multishell Quantum Dots Toward Efficient White Light Emission[J]. ACS Appl Mater Interfaces, 2017,9(11):9833-9839. doi: 10.1021/acsami.6b15997

    56. [56]

      Jana S, Srivastava B B, Pradhan N. Correlation of Dopant States and Host Bandgap in Dual-Doped Semiconductor Nanocrystals[J]. J Phys Chem Lett, 2011,2(14):1747-1752. doi: 10.1021/jz200673q

    57. [57]

      Li F, Xia Z, Pan C. High Br- Content CsPb(ClyBr1-y)3 Perovskite Nanocrystals with Strong Mn2+ Emission through Diverse Cation/Anion Exchange Engineering[J]. ACS Appl Mater Interfaces, 2018,10(14):11739-11746. doi: 10.1021/acsami.7b18750

    58. [58]

      Huang S, Li Z, Wang B. Morphology Evolution and Degradation of CsPbBr3 Nanocrystals under Blue Light-Emitting Diode Illumination[J]. ACS Appl Mater Interfaces, 2017,9(8):7249-7258. doi: 10.1021/acsami.6b14423

    59. [59]

      Dang Z, Shamsi J, Palazon F. In Situ Transmission Electron Microscopy Study of Electron Beam-Induced Transformations in Colloidal Cesium Lead Halide Perovskite Nanocrystals[J]. ACS Nano, 2017,11(2):2124-2132. doi: 10.1021/acsnano.6b08324

    60. [60]

      Zhang F, Huang S, Wang P. Colloidal Synthesis of Air-Stable CH3NH3PbI3 Quantum Dots by Gaining Chemical Insight into the Solvent Effects[J]. Chem Mater, 2017,29(8):3793-3799. doi: 10.1021/acs.chemmater.7b01100

    61. [61]

      Zou S, Liu Y, Li J. Stabilizing Cesium Lead Halide Perovskite Lattice Through Mn(Ⅱ) Substitution for Air-Stable Light-Emitting Diodes[J]. J Am Chem Soc, 2017,139(33):11443-11450. doi: 10.1021/jacs.7b04000

    62. [62]

      Huang S, Li Z, Kong L. Enhancing the Stability of CH3NH3PbBr3 Quantum Dots by Embedding in Silica Spheres Derived from Tetramethyl Orthosilicate in "Waterless" Toluene[J]. J Am Chem Soc, 2016,138(18):5749-5752. doi: 10.1021/jacs.5b13101

    63. [63]

      Loiudice A, Saris S, Oveisi E. CsPbBr3 QD/AlOx Inorganic Nanocomposites with Exceptional Stability in Water, Light, and Heat[J]. Angew Chem Int Ed, 2017,56(36):10696-10701. doi: 10.1002/anie.201703703

    64. [64]

      Hu H, Wu L, Tan Y. Interfacial Synthesis of Highly Stable CsPbX3/Oxide Janus Nanoparticles[J]. J Am Chem Soc, 2017,140(1):406-412.

    65. [65]

      Woo J Y, Kim Y, Bae J. Highly Stable Cesium Lead Halide Perovskite Nanocrystals Through in Situ Lead Halide Inorganic Passivation[J]. Chem Mater, 2017,29(17):7088-7092. doi: 10.1021/acs.chemmater.7b02669

    66. [66]

      Yuan B, Guan S, Sun X. Highly Efficient Carbon Dots with Reversibly Switchable Green-Red Emissions for Trichromatic White Light-Emitting Diodes[J]. ACS Appl Mater Interfaces, 2018,10(18):16005-16014. doi: 10.1021/acsami.8b02379

    67. [67]

      Gao R, Zhao M, Guan Y. Ordered and Flexible Lanthanide Complex Thin Films Showing Up-Conversion and Color-Tunable Luminescence[J]. J Mater Chem C, 2014,2(45):9579-9586. doi: 10.1039/C4TC01213E

    68. [68]

      Li Z, Zhou Y, Yan D. Electrochemiluminescence Resonance Energy Transfer(ERET) Towards Trinitrotoluene Sensor Based on Layer-by-Layer Assembly of Luminol-Layered Double Hydroxides and CdTe Quantum Dots[J]. J Mater Chem C, 2017,5(14):3473-3479. doi: 10.1039/C7TC00100B

    69. [69]

      Zhou Y, Yan D, Wei M. A 2D Quantum Dot-Based Electrochemiluminescence Film Sensor Towards Reversible Temperature-Sensitive Response and Nitrite Detection[J]. J Mater Chem C, 2015,3(39):10099-10106. doi: 10.1039/C5TC02002F

  • 加载中
    1. [1]

      Miaomiao He Zhiqing Ge Qiang Zhou Jiaqing He Hong Gong Lingling Li Pingping Zhu Wei Shao . Exploring the Fascinating Realm of Quantum Dots. University Chemistry, 2024, 39(6): 231-237. doi: 10.3866/PKU.DXHX202310040

    2. [2]

      Yu SUXinlian FANYao YINLin WANG . From synthesis to application: Development and prospects of InP quantum dots. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2105-2123. doi: 10.11862/CJIC.20240126

    3. [3]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    4. [4]

      Han ZHANGJianfeng SUNJinsheng LIANG . Hydrothermal synthesis and luminescent properties of broadband near-infrared Na3CrF6 phosphor. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 349-356. doi: 10.11862/CJIC.20240098

    5. [5]

      Jianjun Liu Xue Yang Chi Zhang Xueyu Zhao Zhiwei Zhang Yongmei Chen Qinghong Xu Shao Jin . Preparation and Fluorescence Characterization of CdTe Semiconductor Quantum Dots. University Chemistry, 2024, 39(7): 307-315. doi: 10.3866/PKU.DXHX202311031

    6. [6]

      Xuewei BACheng CHENGHuaikang ZHANGDeqing ZHANGShuhua LI . Preparation and luminescent performance of Sr1-xZrSi2O7xDy3+ phosphor with high thermal stability. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 357-364. doi: 10.11862/CJIC.20240096

    7. [7]

      Yan ZHAOXiaokang JIANGZhonghui LIJiaxu WANGHengwei ZHOUHai GUO . Preparation and fluorescence properties of Eu3+-doped CaLaGaO4 red-emitting phosphors. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1861-1868. doi: 10.11862/CJIC.20240242

    8. [8]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    9. [9]

      Chun-Lin Sun Yaole Jiang Yu Chen Rongjing Guo Yongwen Shen Xinping Hui Baoxin Zhang Xiaobo Pan . Construction, Performance Testing, and Practical Applications of a Home-Made Open Fluorescence Spectrometer. University Chemistry, 2024, 39(5): 287-295. doi: 10.3866/PKU.DXHX202311096

    10. [10]

      Zijuan LIXuan LÜJiaojiao CHENHaiyang ZHAOShuo SUNZhiwu ZHANGJianlong ZHANGYanling MAJie LIZixian FENGJiahui LIU . Synthesis of visual fluorescence emission CdSe nanocrystals based on ligand regulation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 308-320. doi: 10.11862/CJIC.20240138

    11. [11]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    12. [12]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    13. [13]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    14. [14]

      Zishuo Yi Peng Liu Yan Xu . Fluorescent “Chameleon”: A Popular Science Experiment Based on Dynamic Luminescence. University Chemistry, 2024, 39(9): 304-310. doi: 10.12461/PKU.DXHX202311079

    15. [15]

      Lin Song Dourong Wang Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107

    16. [16]

      Weina Wang Fengyi Liu Wenliang Wang . “Extracting Commonality, Delving into Typicals, Deriving Individuality”: Constructing a Knowledge Graph of Crystal Structures. University Chemistry, 2024, 39(3): 36-42. doi: 10.3866/PKU.DXHX202308029

    17. [17]

      Liangyu Gong Jie Wang Fengyu Du Lubin Xu Chuanli Ma Shihai Yan Zhuwei Song Fuheng Liu Xiuzhong Wang . Construction and Practice of “One-Point, Two-Lines and Three-Sides” Innovative Experimental Platform. University Chemistry, 2024, 39(4): 26-32. doi: 10.3866/PKU.DXHX202308023

    18. [18]

      Hongyan Feng Weiwei Li . Reflections on the Safety of Chemical Science Popularization Activities. University Chemistry, 2024, 39(9): 379-384. doi: 10.12461/PKU.DXHX202404087

    19. [19]

      Dongju Zhang Rongxiu Zhu . Construction of Ideological and Political Education in Quantum Chemistry Course: Several Teaching Cases to Reveal the Universal Connection of Things. University Chemistry, 2024, 39(7): 272-277. doi: 10.3866/PKU.DXHX202311032

    20. [20]

      Peifeng Su Xin Lu . Development of Undergraduate Quantum Mechanics Module in Chemistry Department under the “Double First Class” Initiative. University Chemistry, 2024, 39(8): 99-103. doi: 10.3866/PKU.DXHX202401087

Metrics
  • PDF Downloads(36)
  • Abstract views(2415)
  • HTML views(454)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return