Citation: WANG Huanhuan, LU Songtao, QIN Wei, WU Xiaohong. Preparation and Electrochemical Performance of MoS2@Co9S8 Yolk-Shell Nanocomposites[J]. Chinese Journal of Applied Chemistry, ;2018, 35(8): 956-962. doi: 10.11944/j.issn.1000-0518.2018.08.180145 shu

Preparation and Electrochemical Performance of MoS2@Co9S8 Yolk-Shell Nanocomposites

  • Corresponding author: WU Xiaohong, wuxiaohong@hit.edu.cn
  • Received Date: 2 May 2018
    Revised Date: 20 June 2018
    Accepted Date: 25 June 2018

    Fund Project: the National Natural Science Foundation of China 51572060Supported by the National Natural Science Foundation of China(No.51572060, No.51502062)the National Natural Science Foundation of China 51502062

Figures(6)

  • Transition metal sulfides have emerged as a desirable anode material for lithium-ion batteries in recent years. Among them, molybdenum disulfide(MoS2) has received intensive research attention because of its unique 2D-layered structure, which can provide an effective diffusion path for the intercalation and exfoliation of lithium ions during the electrochemical reaction process and high theoretical specific capacities(670 mA·h/g). However, as an typical semiconductor material, MoS2 suffers from the inherent low electrical conductivity and large volumetric expansion/shrinkage upon cycling, which will result in poor rate capability and rapid capacity decay that limit its large-scale applications. Much efforts have been devoted to passing these problems by optimizing MoS2 materials to nanostructures and integrating MoS2 with other conductive materials. Cobalt sulfide(Co9S8) is a metallic transition metal sulfide with relatively higher electrical conductivity but shows inferior electrochemical performance, which is possibly related to its sluggish ion transport kinetics. In this regard, the combination of MoS2 and Co9S8 into rationally designed hybrid architectures may offer synergistic advantages, which manifest overall structural merits over the individual component. Herein, we report the synthesis of uniform MoS2@Co9S8 yolk-shell spheres via solvothermal together with chemical vapor deposition method. The MoS2 and Co9S8 are homogeneously distributed throughout the entire yolk-shell spheres, which leads to a faster electron and Li-ion transport and effectively improves the cycling stability and reversible capacity. The void space in the yolk-shell structure can efficiently cushion the volume change during the discharge/charge process. The uniform mixing of the Co9S8 and MoS2 nanocrystals can also facilitate rapid ion/electron transportation and help to stabilize the cycling performance. Therefore, the as-prepared MoS2@Co9S8 yolk-shell spheres deliver superior Li storage performance with good rate capability and stable cycling performance. Especially for the lithium ion battery application, the MoS2@Co9S8 yolk-shell spheres show a remarkably reversible capacity of about 631.5 mA·h/g after 500th cycles at a current density of 0.2 A/g.
  • 加载中
    1. [1]

      Zhu H, Zhang J F, Yan Z. When Cubic Cobalt Sulfide Meets Layered Molybdenum Disulfide:A Core-Shell System Toward Synergetic Electrocatalytic Water Splitting[J]. Adv Mater, 2015,27(32):4752-4759. doi: 10.1002/adma.v27.32

    2. [2]

      Jiang H, Ren D Y, Wang H F. 2D Monolayer MoS2-Carbon Interoverlapped Superstructure:Engineering Ideal Atomic Interface for Lithium Ion Storage[J]. Adv Mater, 2015,27(24):3687-3695. doi: 10.1002/adma.201501059

    3. [3]

      Zhou Y L, Yan D, Xu H Y. Hollow Nanospheres of Mesoporous Co9S8 as a High-Capacity and Long-Life Anode for Advanced Lithium Ion Batteries[J]. Nano Energy, 2015,12:528-537. doi: 10.1016/j.nanoen.2015.01.019

    4. [4]

      Wang Y Y, Kang W P, Wang R M. A Yolk-Shelled Co9S8/MoS2-CN Nanocomposite Derived from a Metal-Organic Framework as a High Performance Anode for Sodium Ion Batteries[J]. J Mater Chem A, 2018,6(11):4776-4782. doi: 10.1039/C8TA00493E

    5. [5]

      Bai J M, Meng T, Guo D L. Co9S8@MoS2 Core Shell Heterostructures as Trifunctional Electrocatalysts for Overall Water Splitting and Zn Air Batteries[J]. ACS Appl Mater Interfaces, 2018,10(2):1678-1689. doi: 10.1021/acsami.7b14997

    6. [6]

      Ramos M, Berhault G, Ferrer D A. HRTEM and Molecular Modeling of the MoS2-Co9S8 Interface:Understanding the Promotion Effect in Bulk HDS Catalysts[J]. Catal Sci Technol, 2012,2(1):164-178. doi: 10.1039/C1CY00126D

    7. [7]

      Zhang J, Li Z, Lou X W. A Freestanding Selenium Disulfide Cathode Based on Cobalt Disulfide-Decorated Multichannel Carbon Fibers with Enhanced Lithium Storage Performance[J]. Angew Chem Int Ed, 2017,56(45):14107-14112. doi: 10.1002/anie.201708105

    8. [8]

      Wang S B, Guan B Y, Yu L. Rational Design of Three-Layered TiO2@Carbon@MoS2 Hierarchical Nanotubes for Enhanced Lithium Storage[J]. Adv Mater, 2017,29(37)1702724. doi: 10.1002/adma.v29.37

    9. [9]

      Feng Y J, Zou R Q, Wang X D. Tailoring CoO-ZnO Nanorod and Nanotube Arrays for Li-Ion Battery Anode Materials[J]. J Mater Chem A, 2013,1(34):9654-9658. doi: 10.1039/c3ta11538k

    10. [10]

      Geng H B, Yan Q Y, Gu H W. Co9S8/MoS2 Yolk-Shell Spheres for Advanced Li/Na Storage[J]. Small, 2017,13(14)1603490. doi: 10.1002/smll.v13.14

    11. [11]

      Liu Z, Yu X Y, Paik U. Etching-in-a-Box:A Novel Strategy to Synthesize Unique Yolk-Shelled Fe3O4@Carbon with an Ultralong Cycling Life for Lithium Storage[J]. Adv Energy Mater, 2016,6(6)1502318. doi: 10.1002/aenm.201502318

    12. [12]

      Li S, Niu J J, Zhao Y C. High-Rate Aluminium Yolk-Shell Nanoparticle Anode for Li-Ion Battery with Long Cycle Life and Ultrahigh Capacity[J]. Nat Commun, 2015,67872. doi: 10.1038/ncomms8872

  • 加载中
    1. [1]

      Qin Hu Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024

    2. [2]

      Shuqi YuYu YangKeisuke KurodaJian PuRui GuoLi-An Hou . Selective removal of Cr(Ⅵ) using polyvinylpyrrolidone and polyacrylamide co-modified MoS2 composites by adsorption combined with reduction. Chinese Chemical Letters, 2024, 35(6): 109130-. doi: 10.1016/j.cclet.2023.109130

    3. [3]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    4. [4]

      Xueyu Lin Ruiqi Wang Wujie Dong Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005

    5. [5]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    6. [6]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    7. [7]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    8. [8]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    9. [9]

      Aoyu Huang Jun Xu Yu Huang Gui Chu Mao Wang Lili Wang Yongqi Sun Zhen Jiang Xiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100037-. doi: 10.3866/PKU.WHXB202408007

    10. [10]

      Yuting ZHANGZunyi LIUNing LIDongqiang ZHANGShiling ZHAOYu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204

    11. [11]

      Hao GUOTong WEIQingqing SHENAnqi HONGZeting DENGZheng FANGJichao SHIRenhong LI . Electrocatalytic decoupling of urea solution for hydrogen production by nickel foam-supported Co9S8/Ni3S2 heterojunction. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2141-2154. doi: 10.11862/CJIC.20240085

    12. [12]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    13. [13]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    14. [14]

      Jiaxuan Zuo Kun Zhang Jing Wang Xifei Li . 锂离子电池Ni-Co-Mn基正极材料前驱体的形核调控及机制. Acta Physico-Chimica Sinica, 2025, 41(1): 2404042-. doi: 10.3866/PKU.WHXB202404042

    15. [15]

      Zhuo WANGXiaotong LIZhipeng HUJunqiao PAN . Three-dimensional porous carbon decorated with nano bismuth particles: Preparation and sodium storage properties. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 267-274. doi: 10.11862/CJIC.20240223

    16. [16]

      Min LIXianfeng MENG . Preparation and microwave absorption properties of ZIF-67 derived Co@C/MoS2 nanocomposites. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1932-1942. doi: 10.11862/CJIC.20240065

    17. [17]

      Ping WangTing WangMing XuZe GaoHongyu LiBowen LiYuqi WangChaoqun QuMing Feng . Keplerate polyoxomolybdate nanoball mediated controllable preparation of metal-doped molybdenum disulfide for electrocatalytic hydrogen evolution in acidic and alkaline media. Chinese Chemical Letters, 2024, 35(7): 108930-. doi: 10.1016/j.cclet.2023.108930

    18. [18]

      Yu Guo Zhiwei Huang Yuqing Hu Junzhe Li Jie Xu . 钠离子电池中铁基异质结构负极材料的最新研究进展. Acta Physico-Chimica Sinica, 2025, 41(3): 2311015-. doi: 10.3866/PKU.WHXB202311015

    19. [19]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    20. [20]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

Metrics
  • PDF Downloads(5)
  • Abstract views(1789)
  • HTML views(1039)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return