Citation: CHEN Haining. Recent Progress in Carbon-based Perovskite Solar Cells[J]. Chinese Journal of Applied Chemistry, ;2018, 35(8): 916-924. doi: 10.11944/j.issn.1000-0518.2018.08.180141 shu

Recent Progress in Carbon-based Perovskite Solar Cells

  • Corresponding author: CHEN Haining, chenhaining@buaa.edu.cn
  • Received Date: 2 May 2018
    Revised Date: 25 June 2018
    Accepted Date: 25 June 2018

    Fund Project: the National Natural Science Foundation of China 21603010Beijing Natural Science Foundation 2182031Supported by the National Natural Science Foundation of China(No.21603010), Beijing Natural Science Foundation(No.2182031)

Figures(5)

  • Due to the low-cost and simple fabrication processes, organometal trihalide perovskite solar cells(PSCs) have garnered recent interest in the scientific community, and their power conversion efficiencies have been rapidly increased to the levels comparable to traditional crystalline Si solar cells. However, the low stability of PSCs has obviously limited their commercialization. Among various kinds of PSCs, the one using carbon electrode(C-PSCs) as hole extraction electrode has shown the promise to address the stability issues because unstable hole transport materials were removed, while the carbon electrode is highly stable. Since first reported in 2013, much progress has been made on C-PSCs with the efficiency rapidly increasing from 6.6% to 15.9%. Herein, we have systematically reviewed the recent developments in C-PSCs, including device structure and working principles, progress on different parts of C-PSCs(electron transporting layer, perovskite layer and carbon electrode), and the issues needed to be addressed.
  • 加载中
    1. [1]

      Kojima A, Teshima K, Shirai Y. Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells[J]. J Am Chem Soc, 2009,131(17):6050-6051. doi: 10.1021/ja809598r

    2. [2]

      Li X, Bi D, Yi C. A Vacuum Flash-Assisted Solution Process for High-Efficiency Large-Area Perovskite Solar Cells[J]. Science, 2016,353(6294):58-62. doi: 10.1126/science.aaf8060

    3. [3]

      Yang W S, Park B W, Jung E H. Iodide Management in Formamidinium-Lead-Halide Based Perovskite Layers for Efficient Solar Cells[J]. Science, 2017,356(6345):1376-1379. doi: 10.1126/science.aan2301

    4. [4]

      Sun S Y, Salim T, Mathews N. The Origin of High Efficiency in Low-Temperature Solution-Processable Bilayer Organometal Halide Hybrid Solar Cells[J]. Energy Environ Sci, 2014,7(1):399-407.  

    5. [5]

      Im J H, Jang I H, Pellet N. Growth of CH3NH3PbI3 Cuboids with Controlled Size for High-Efficiency Perovskite Solar Cells[J]. Nat Nanotechnol, 2014,9(11):927-32. doi: 10.1038/nnano.2014.181

    6. [6]

      Ponseca C S Jr, Savenije T J, Abdellah M. Organometal Halide Perovskite Solar Cell Materials Rationalized:Ultrafast Charge Generation, High and Microsecond-Long Balanced Mobilities, and Slow Recombination[J]. J Am Chem Soc, 2014,136(14):5189-5192. doi: 10.1021/ja412583t

    7. [7]

      Lim K G, Ahn S, Kim Y H. Universal Energy Level Tailoring of Self-Organized Hole Extraction Layers in Organic Solar Cells and Organic-Inorganic Hybrid Perovskite Solar Cells[J]. Energ Environ Sci, 2016,9(2):932-939.

    8. [8]

      Stranks S D, Eperon G E, Grancini G. Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber[J]. Science, 2013,342(6156):341-344. doi: 10.1126/science.1243982

    9. [9]

      Xing G, Mathews N, Sun S. Long-Range Balanced Electron-and Hole-Transport Lengths in Organic-Inorganic CH3NH3PbI3[J]. Science, 2013,342(6156):344-347. doi: 10.1126/science.1243167

    10. [10]

      D'Innocenzo V, Grancini G, Alcocer M J. Excitons Versus Free Charges in Organo-Lead Tri-halide Perovskites[J]. Nat Commun, 2014,5(4)3586.  

    11. [11]

      Rong Y G, Liu L F, Mei A Y. Beyond Efficiency:The Challenge of Stability in Mesoscopic Perovskite Solar Cells[J]. Adv Energy Mater, 2015,5(20)1501066. doi: 10.1002/aenm.201501066

    12. [12]

      Manser J S, Saidaminov M I, Christians J A. Making and Breaking of Lead Halide Perovskites[J]. Acc Chem Res, 2016,49(2):330-338. doi: 10.1021/acs.accounts.5b00455

    13. [13]

      Kato Y, Ono L K, Lee M V. Silver Iodide Formation in Methyl Ammonium Lead Iodide Perovskite Solar Cells with Silver Top Electrodes[J]. Adv Mater Interfaces, 2015,2(13)1500195. doi: 10.1002/admi.201500195

    14. [14]

      Besleaga C, Abramiuc L E, Stancu V. Iodine Migration and Degradation of Perovskite Solar Cells Enhanced by Metallic Electrodes[J]. J Phys Chem Lett, 2016,7(24):5168-5175. doi: 10.1021/acs.jpclett.6b02375

    15. [15]

      Etgar L, Gao P, Xue Z. Mesoscopic CH3NH3PbI3/TiO2 Heterojunction Solar Cells[J]. J Am Chem Soc, 2012,134(42):17396-17399. doi: 10.1021/ja307789s

    16. [16]

      Mei A, Li X, Liu L. A Hole-Conductor-Free, Fully Printable Mesoscopic Perovskite Solar Cell with High Stability[J]. Science, 2014,345(6194):295-298. doi: 10.1126/science.1254763

    17. [17]

      Chen H, Yang S. Carbon-Based Perovskite Solar Cells Without Hole Transport Materials:The Front Runner to the Market?[J]. Adv Mater, 2017,29(24)1603994. doi: 10.1002/adma.201603994

    18. [18]

      Ku Z, Rong Y, Xu M. Full Printable Processed Mesoscopic CH3NH3PbI3/TiO2 Heterojunction Solar Cells with Carbon Counter Electrode[J]. Sci Rep, 2013,33132. doi: 10.1038/srep03132

    19. [19]

      Zhang H, Wang H, Williams S T. SrCl2 Derived Perovskite Facilitating a High Efficiency of 16% in Hole-Conductor-Free Fully Printable Mesoscopic Perovskite Solar Cells[J]. Adv Mater, 2017,29(15)1606608.

    20. [20]

      Kim H S, Lee C R, Im J H. Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%[J]. Sci Rep, 2012,2591. doi: 10.1038/srep00591

    21. [21]

      Lee M M, Teuscher J, Miyasaka T. Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites[J]. Science, 2012,338(6107):643-647. doi: 10.1126/science.1228604

    22. [22]

      Liu T F, Liu L F, Hu M. Critical Parameters in TiO2/ZrO2/Carbon-based Mesoscopic Perovskite Solar Cell[J]. J Power Sources, 2015,293(20):533-538.

    23. [23]

      Chen H N, Wei Z H, He H X. Solvent Engineering Boosts the Efficiency of Paintable Carbon-Based Perovskite Solar Cells to Beyond 14%[J]. Adv Energy Mater, 2016,6(8)1502087. doi: 10.1002/aenm.201502087

    24. [24]

      Wei Z H, Yan K Y, Chen H N. Cost-Efficient Clamping Solar Cells Using Candle Soot for Hole Extraction From Ambipolar Perovskites[J]. Energ Environ Sci, 2014,7(10):3326-3333. doi: 10.1039/C4EE01983K

    25. [25]

      Rong Y, Ku Z, Mei A. Hole-Conductor-Free Mesoscopic TiO2/CH3NH3PbI3 Heterojunction Solar Cells Based on Anatase Nanosheets and Carbon Counter Electrodes[J]. J Phys Chem Lett, 2014,5(12):2160-2164. doi: 10.1021/jz500833z

    26. [26]

      Chen H, Wei Z, Yan K. Liquid Phase Deposition of TiO2 Nanolayer Affords CH3NH3PbI3/Nanocarbon Solar Cells with High Open-Circuit Voltage[J]. Faraday Discuss, 2014,176:271-86. doi: 10.1039/C4FD00155A

    27. [27]

      Zheng X, Wei Z, Chen H. Designing Nanobowl Arrays of Mesoporous TiO2 as an Alternative Electron Transporting Layer for Carbon Cathode-Based Perovskite Solar Cells[J]. Nanoscale, 2016,8(12):6393-6402. doi: 10.1039/C5NR06715D

    28. [28]

      Zheng X L, Wei Z H, Chen H N. In-situ Fabrication of Dual Porous Titanium Dioxide Films as Anode for Carbon Cathode Based Perovskite Solar Cell[J]. J Energy Chem, 2015,24(6):736-743. doi: 10.1016/j.jechem.2015.10.003

    29. [29]

      Zhou H, Shi Y, Wang K. Low-Temperature Processed and Carbon-Based ZnO/CH3NH3PbI3/C Planar Heterojunction Perovskite Solar Cells[J]. J Phys Chem C, 2015,119(9):4600-4605. doi: 10.1021/jp512101d

    30. [30]

      Shirazi M, Sabet Dariani R, Toroghinejad M R. Efficiency Enhancement of Hole-Conductor-Free Perovskite Solar Cell Based on ZnO Nanostructure by Al Doping in ZnO[J]. J Alloys Compd, 2017,692(25):492-502.

    31. [31]

      Wang B, Liu T, Zhou Y. Hole-Conductor-Free and Carbon Counter Electrodes Perovskite Solar Cells Based on ZnO Nanorod Arrays[J]. Phys Chem Chem Phys, 2016,18(39):27078-27082. doi: 10.1039/C6CP04793A

    32. [32]

      Meng X, Zhou J, Hou J. Versatility of Carbon Enables All Carbon Based Perovskite Solar Cells to Achieve High Efficiency and High Stability[J]. Adv Mater, 2018,30(21)1706975. doi: 10.1002/adma.v30.21

    33. [33]

      Li X, Tschumi M, Han H W. Outdoor Performance and Stability under Elevated Temperatures and Long-Term Light Soaking of Triple-Layer Mesoporous Perovskite Photovoltaics[J]. Energy Technol, 2015,3(6):551-555. doi: 10.1002/ente.v3.6

    34. [34]

      Baranwal A K, Kanaya S, Peiris TAN. 100℃ Thermal Stability of Printable Perovskite Solar Cells Using Porous Carbon Counter Electrodes[J]. ChemSusChem, 2016,9(18):2604-2608. doi: 10.1002/cssc.201600933

    35. [35]

      Hu M, Liu L, Mei A. Efficient Hole-Conductor-Free, Fully Printable Mesoscopic Perovskite Solar Cells with a Broad Light Harvester NH2CHNH2PbI3[J]. J Mater Chem A, 2014,2(40):17115-17121. doi: 10.1039/C4TA03741C

    36. [36]

      Chang X, Li W, Zhu L. Carbon-Based CsPbBr3 Perovskite Solar Cells:All-Ambient Processes and High Thermal Stability[J]. ACS Appl Mater Interface, 2016,8(49):33649-33655. doi: 10.1021/acsami.6b11393

    37. [37]

      Liang J, Wang C, Wang Y. All-Inorganic Perovskite Solar Cells[J]. J Am Chem Soc, 2016,138(49):15829-15832. doi: 10.1021/jacs.6b10227

    38. [38]

      Duan J, Zhao Y, He B. High-Purity Inorganic Perovskite Films for Solar Cells with 9.72% Efficiency[J]. Angew Chem Int Ed, 2018,57(14):3787-3791. doi: 10.1002/anie.201800019

    39. [39]

      Xiang S, Li W, Wei Y. Synergistic Effect of Non-stoichiometry and Sb-doping on Air-stable α-CsPbI3 for Efficient Carbon-based Perovskite Solar Cells[J]. Nanoscale, 2018,10(21):9996-10004. doi: 10.1039/C7NR09657G

    40. [40]

      Liang J, Zhao P, Wang C. CsPb0.9Sn0.1IBr2 Based All-Inorganic Perovskite Solar Cells with Exceptional Efficiency and Stability[J]. J Am Chem Soc, 2017,139(40):14009-14012. doi: 10.1021/jacs.7b07949

    41. [41]

      Wei Z, Chen H, Yan K. Inkjet Printing and Instant Chemical Transformation of a CH3NH3PbI3/Nanocarbon Electrode and Interface for Planar Perovskite Solar Cells[J]. Angew Chem, 2014,53(48):13239-13243. doi: 10.1002/anie.201408638

    42. [42]

      Wei Z H, Chen H N, Yan K Y. Hysteresis-free Multi-Walled Carbon Nanotube-Based Perovskite Solar Cells with a High Fill Factor[J]. J Mater Chem A, 2015,3(48):24226-24231. doi: 10.1039/C5TA07714A

    43. [43]

      Zheng X, Chen H, Li Q. Boron Doping of Multiwalled Carbon Nanotubes Significantly Enhances Hole Extraction in Carbon-Based Perovskite Solar Cells[J]. Nano Lett, 2017,17(4):2496-2505. doi: 10.1021/acs.nanolett.7b00200

    44. [44]

      Yan K Y, Wei Z H, Li J K. High-Performance Graphene-Based Hole Conductor-Free Perovskite Solar Cells:Schottky Junction Enhanced Hole Extraction and Electron Blocking[J]. Small, 2015,11(19):2269-74. doi: 10.1002/smll.v11.19

    45. [45]

      Chang X, Li W, Chen H. Colloidal Precursor-Induced Growth of Ultra-Even CH3NH3PbI3 for High-Performance Paintable Carbon-Based Perovskite Solar Cells[J]. ACS Appl Mater Interface, 2016,8(44):30184-30192. doi: 10.1021/acsami.6b09925

  • 加载中
    1. [1]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    2. [2]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    3. [3]

      Yao Ma Xin Zhao Hongxu Chen Wei Wei Liang Shen . Progress and Perspective of Perovskite Thin Single Crystal Photodetectors. Acta Physico-Chimica Sinica, 2025, 41(4): 100030-. doi: 10.3866/PKU.WHXB202309045

    4. [4]

      Lin Song Dourong Wang Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107

    5. [5]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    6. [6]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    7. [7]

      Rui Li Huan Liu Yinan Jiao Shengjian Qin Jie Meng Jiayu Song Rongrong Yan Hang Su Hengbin Chen Zixuan Shang Jinjin Zhao . 卤化物钙钛矿的单双向离子迁移. Acta Physico-Chimica Sinica, 2024, 40(11): 2311011-. doi: 10.3866/PKU.WHXB202311011

    8. [8]

      Xinyuan Shi Chenyangjiang Changyu Zhai Xuemei Lu Jia Li Zhu Mao . Preparation and Photoelectric Performance Characterization of Perovskite CsPbBr3 Thin Films. University Chemistry, 2024, 39(6): 383-389. doi: 10.3866/PKU.DXHX202312019

    9. [9]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    10. [10]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    11. [11]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    12. [12]

      Shengjuan Huo Xiaoyan Zhang Xiangheng Li Xiangning Li Tianfang Chen Yuting Shen . Unveiling the Marvels of Titanium: Popularizing Multifunctional Colored Titanium Product Films. University Chemistry, 2024, 39(5): 184-192. doi: 10.3866/PKU.DXHX202310127

    13. [13]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    14. [14]

      Xiaomei Ning Liang Zhan Xiaosong Zhou Jin Luo Xunfu Zhou Cuifen Luo . Preparation and Electro-Oxidation Performance of PtBi Supported on Carbon Cloth: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 217-224. doi: 10.3866/PKU.DXHX202401085

    15. [15]

      Pengyu Dong Yue Jiang Zhengchi Yang Licheng Liu Gu Li Xinyang Wen Zhen Wang Xinbo Shi Guofu Zhou Jun-Ming Liu Jinwei Gao . NbSe2纳米片优化钙钛矿太阳能电池的埋底界面. Acta Physico-Chimica Sinica, 2025, 41(3): 2407025-. doi: 10.3866/PKU.WHXB202407025

    16. [16]

      Yueguang Chen Wenqiang Sun . “Carbon” Adventures. University Chemistry, 2024, 39(9): 248-253. doi: 10.3866/PKU.DXHX202308074

    17. [17]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    18. [18]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    19. [19]

      Lei Shu Zimin Duan Yushen Kang Zijian Zhao Hong Wang Lihua Zhu Hui Xiong Nan Wang . An Exploration of the CO2-Involved Carbon Cycle World. University Chemistry, 2024, 39(5): 144-153. doi: 10.3866/PKU.DXHX202309084

    20. [20]

      Yu Li Lanlan Song Hongxiu Zhang . Exploring the Innovation in Teaching Principles of Chemical Engineering: Emphasizing Foundational Knowledge and Practical Skills. University Chemistry, 2024, 39(8): 91-98. doi: 10.3866/PKU.DXHX202312087

Metrics
  • PDF Downloads(27)
  • Abstract views(1099)
  • HTML views(456)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return