Recent Progress in Carbon-based Perovskite Solar Cells
- Corresponding author: CHEN Haining, chenhaining@buaa.edu.cn
Citation:
CHEN Haining. Recent Progress in Carbon-based Perovskite Solar Cells[J]. Chinese Journal of Applied Chemistry,
;2018, 35(8): 916-924.
doi:
10.11944/j.issn.1000-0518.2018.08.180141
Kojima A, Teshima K, Shirai Y. Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells[J]. J Am Chem Soc, 2009,131(17):6050-6051. doi: 10.1021/ja809598r
Li X, Bi D, Yi C. A Vacuum Flash-Assisted Solution Process for High-Efficiency Large-Area Perovskite Solar Cells[J]. Science, 2016,353(6294):58-62. doi: 10.1126/science.aaf8060
Yang W S, Park B W, Jung E H. Iodide Management in Formamidinium-Lead-Halide Based Perovskite Layers for Efficient Solar Cells[J]. Science, 2017,356(6345):1376-1379. doi: 10.1126/science.aan2301
Sun S Y, Salim T, Mathews N. The Origin of High Efficiency in Low-Temperature Solution-Processable Bilayer Organometal Halide Hybrid Solar Cells[J]. Energy Environ Sci, 2014,7(1):399-407.
Im J H, Jang I H, Pellet N. Growth of CH3NH3PbI3 Cuboids with Controlled Size for High-Efficiency Perovskite Solar Cells[J]. Nat Nanotechnol, 2014,9(11):927-32. doi: 10.1038/nnano.2014.181
Ponseca C S Jr, Savenije T J, Abdellah M. Organometal Halide Perovskite Solar Cell Materials Rationalized:Ultrafast Charge Generation, High and Microsecond-Long Balanced Mobilities, and Slow Recombination[J]. J Am Chem Soc, 2014,136(14):5189-5192. doi: 10.1021/ja412583t
Lim K G, Ahn S, Kim Y H. Universal Energy Level Tailoring of Self-Organized Hole Extraction Layers in Organic Solar Cells and Organic-Inorganic Hybrid Perovskite Solar Cells[J]. Energ Environ Sci, 2016,9(2):932-939.
Stranks S D, Eperon G E, Grancini G. Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber[J]. Science, 2013,342(6156):341-344. doi: 10.1126/science.1243982
Xing G, Mathews N, Sun S. Long-Range Balanced Electron-and Hole-Transport Lengths in Organic-Inorganic CH3NH3PbI3[J]. Science, 2013,342(6156):344-347. doi: 10.1126/science.1243167
D'Innocenzo V, Grancini G, Alcocer M J. Excitons Versus Free Charges in Organo-Lead Tri-halide Perovskites[J]. Nat Commun, 2014,5(4)3586.
Rong Y G, Liu L F, Mei A Y. Beyond Efficiency:The Challenge of Stability in Mesoscopic Perovskite Solar Cells[J]. Adv Energy Mater, 2015,5(20)1501066. doi: 10.1002/aenm.201501066
Manser J S, Saidaminov M I, Christians J A. Making and Breaking of Lead Halide Perovskites[J]. Acc Chem Res, 2016,49(2):330-338. doi: 10.1021/acs.accounts.5b00455
Kato Y, Ono L K, Lee M V. Silver Iodide Formation in Methyl Ammonium Lead Iodide Perovskite Solar Cells with Silver Top Electrodes[J]. Adv Mater Interfaces, 2015,2(13)1500195. doi: 10.1002/admi.201500195
Besleaga C, Abramiuc L E, Stancu V. Iodine Migration and Degradation of Perovskite Solar Cells Enhanced by Metallic Electrodes[J]. J Phys Chem Lett, 2016,7(24):5168-5175. doi: 10.1021/acs.jpclett.6b02375
Etgar L, Gao P, Xue Z. Mesoscopic CH3NH3PbI3/TiO2 Heterojunction Solar Cells[J]. J Am Chem Soc, 2012,134(42):17396-17399. doi: 10.1021/ja307789s
Mei A, Li X, Liu L. A Hole-Conductor-Free, Fully Printable Mesoscopic Perovskite Solar Cell with High Stability[J]. Science, 2014,345(6194):295-298. doi: 10.1126/science.1254763
Chen H, Yang S. Carbon-Based Perovskite Solar Cells Without Hole Transport Materials:The Front Runner to the Market?[J]. Adv Mater, 2017,29(24)1603994. doi: 10.1002/adma.201603994
Ku Z, Rong Y, Xu M. Full Printable Processed Mesoscopic CH3NH3PbI3/TiO2 Heterojunction Solar Cells with Carbon Counter Electrode[J]. Sci Rep, 2013,33132. doi: 10.1038/srep03132
Zhang H, Wang H, Williams S T. SrCl2 Derived Perovskite Facilitating a High Efficiency of 16% in Hole-Conductor-Free Fully Printable Mesoscopic Perovskite Solar Cells[J]. Adv Mater, 2017,29(15)1606608.
Kim H S, Lee C R, Im J H. Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%[J]. Sci Rep, 2012,2591. doi: 10.1038/srep00591
Lee M M, Teuscher J, Miyasaka T. Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites[J]. Science, 2012,338(6107):643-647. doi: 10.1126/science.1228604
Liu T F, Liu L F, Hu M. Critical Parameters in TiO2/ZrO2/Carbon-based Mesoscopic Perovskite Solar Cell[J]. J Power Sources, 2015,293(20):533-538.
Chen H N, Wei Z H, He H X. Solvent Engineering Boosts the Efficiency of Paintable Carbon-Based Perovskite Solar Cells to Beyond 14%[J]. Adv Energy Mater, 2016,6(8)1502087. doi: 10.1002/aenm.201502087
Wei Z H, Yan K Y, Chen H N. Cost-Efficient Clamping Solar Cells Using Candle Soot for Hole Extraction From Ambipolar Perovskites[J]. Energ Environ Sci, 2014,7(10):3326-3333. doi: 10.1039/C4EE01983K
Rong Y, Ku Z, Mei A. Hole-Conductor-Free Mesoscopic TiO2/CH3NH3PbI3 Heterojunction Solar Cells Based on Anatase Nanosheets and Carbon Counter Electrodes[J]. J Phys Chem Lett, 2014,5(12):2160-2164. doi: 10.1021/jz500833z
Chen H, Wei Z, Yan K. Liquid Phase Deposition of TiO2 Nanolayer Affords CH3NH3PbI3/Nanocarbon Solar Cells with High Open-Circuit Voltage[J]. Faraday Discuss, 2014,176:271-86. doi: 10.1039/C4FD00155A
Zheng X, Wei Z, Chen H. Designing Nanobowl Arrays of Mesoporous TiO2 as an Alternative Electron Transporting Layer for Carbon Cathode-Based Perovskite Solar Cells[J]. Nanoscale, 2016,8(12):6393-6402. doi: 10.1039/C5NR06715D
Zheng X L, Wei Z H, Chen H N. In-situ Fabrication of Dual Porous Titanium Dioxide Films as Anode for Carbon Cathode Based Perovskite Solar Cell[J]. J Energy Chem, 2015,24(6):736-743. doi: 10.1016/j.jechem.2015.10.003
Zhou H, Shi Y, Wang K. Low-Temperature Processed and Carbon-Based ZnO/CH3NH3PbI3/C Planar Heterojunction Perovskite Solar Cells[J]. J Phys Chem C, 2015,119(9):4600-4605. doi: 10.1021/jp512101d
Shirazi M, Sabet Dariani R, Toroghinejad M R. Efficiency Enhancement of Hole-Conductor-Free Perovskite Solar Cell Based on ZnO Nanostructure by Al Doping in ZnO[J]. J Alloys Compd, 2017,692(25):492-502.
Wang B, Liu T, Zhou Y. Hole-Conductor-Free and Carbon Counter Electrodes Perovskite Solar Cells Based on ZnO Nanorod Arrays[J]. Phys Chem Chem Phys, 2016,18(39):27078-27082. doi: 10.1039/C6CP04793A
Meng X, Zhou J, Hou J. Versatility of Carbon Enables All Carbon Based Perovskite Solar Cells to Achieve High Efficiency and High Stability[J]. Adv Mater, 2018,30(21)1706975. doi: 10.1002/adma.v30.21
Li X, Tschumi M, Han H W. Outdoor Performance and Stability under Elevated Temperatures and Long-Term Light Soaking of Triple-Layer Mesoporous Perovskite Photovoltaics[J]. Energy Technol, 2015,3(6):551-555. doi: 10.1002/ente.v3.6
Baranwal A K, Kanaya S, Peiris TAN. 100℃ Thermal Stability of Printable Perovskite Solar Cells Using Porous Carbon Counter Electrodes[J]. ChemSusChem, 2016,9(18):2604-2608. doi: 10.1002/cssc.201600933
Hu M, Liu L, Mei A. Efficient Hole-Conductor-Free, Fully Printable Mesoscopic Perovskite Solar Cells with a Broad Light Harvester NH2CHNH2PbI3[J]. J Mater Chem A, 2014,2(40):17115-17121. doi: 10.1039/C4TA03741C
Chang X, Li W, Zhu L. Carbon-Based CsPbBr3 Perovskite Solar Cells:All-Ambient Processes and High Thermal Stability[J]. ACS Appl Mater Interface, 2016,8(49):33649-33655. doi: 10.1021/acsami.6b11393
Liang J, Wang C, Wang Y. All-Inorganic Perovskite Solar Cells[J]. J Am Chem Soc, 2016,138(49):15829-15832. doi: 10.1021/jacs.6b10227
Duan J, Zhao Y, He B. High-Purity Inorganic Perovskite Films for Solar Cells with 9.72% Efficiency[J]. Angew Chem Int Ed, 2018,57(14):3787-3791. doi: 10.1002/anie.201800019
Xiang S, Li W, Wei Y. Synergistic Effect of Non-stoichiometry and Sb-doping on Air-stable α-CsPbI3 for Efficient Carbon-based Perovskite Solar Cells[J]. Nanoscale, 2018,10(21):9996-10004. doi: 10.1039/C7NR09657G
Liang J, Zhao P, Wang C. CsPb0.9Sn0.1IBr2 Based All-Inorganic Perovskite Solar Cells with Exceptional Efficiency and Stability[J]. J Am Chem Soc, 2017,139(40):14009-14012. doi: 10.1021/jacs.7b07949
Wei Z, Chen H, Yan K. Inkjet Printing and Instant Chemical Transformation of a CH3NH3PbI3/Nanocarbon Electrode and Interface for Planar Perovskite Solar Cells[J]. Angew Chem, 2014,53(48):13239-13243. doi: 10.1002/anie.201408638
Wei Z H, Chen H N, Yan K Y. Hysteresis-free Multi-Walled Carbon Nanotube-Based Perovskite Solar Cells with a High Fill Factor[J]. J Mater Chem A, 2015,3(48):24226-24231. doi: 10.1039/C5TA07714A
Zheng X, Chen H, Li Q. Boron Doping of Multiwalled Carbon Nanotubes Significantly Enhances Hole Extraction in Carbon-Based Perovskite Solar Cells[J]. Nano Lett, 2017,17(4):2496-2505. doi: 10.1021/acs.nanolett.7b00200
Yan K Y, Wei Z H, Li J K. High-Performance Graphene-Based Hole Conductor-Free Perovskite Solar Cells:Schottky Junction Enhanced Hole Extraction and Electron Blocking[J]. Small, 2015,11(19):2269-74. doi: 10.1002/smll.v11.19
Chang X, Li W, Chen H. Colloidal Precursor-Induced Growth of Ultra-Even CH3NH3PbI3 for High-Performance Paintable Carbon-Based Perovskite Solar Cells[J]. ACS Appl Mater Interface, 2016,8(44):30184-30192. doi: 10.1021/acsami.6b09925
Yixuan Gao , Lingxing Zan , Wenlin Zhang , Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091
Cheng PENG , Jianwei WEI , Yating CHEN , Nan HU , Hui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282
Yao Ma , Xin Zhao , Hongxu Chen , Wei Wei , Liang Shen . Progress and Perspective of Perovskite Thin Single Crystal Photodetectors. Acta Physico-Chimica Sinica, 2025, 41(4): 100030-. doi: 10.3866/PKU.WHXB202309045
Lin Song , Dourong Wang , Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107
Jizhou Liu , Chenbin Ai , Chenrui Hu , Bei Cheng , Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006
Qi Li , Pingan Li , Zetong Liu , Jiahui Zhang , Hao Zhang , Weilai Yu , Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030
Rui Li , Huan Liu , Yinan Jiao , Shengjian Qin , Jie Meng , Jiayu Song , Rongrong Yan , Hang Su , Hengbin Chen , Zixuan Shang , Jinjin Zhao . 卤化物钙钛矿的单双向离子迁移. Acta Physico-Chimica Sinica, 2024, 40(11): 2311011-. doi: 10.3866/PKU.WHXB202311011
Xinyuan Shi , Chenyangjiang , Changyu Zhai , Xuemei Lu , Jia Li , Zhu Mao . Preparation and Photoelectric Performance Characterization of Perovskite CsPbBr3 Thin Films. University Chemistry, 2024, 39(6): 383-389. doi: 10.3866/PKU.DXHX202312019
Yifeng Xu , Jiquan Liu , Bin Cui , Yan Li , Gang Xie , Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009
Fan JIA , Wenbao XU , Fangbin LIU , Haihua ZHANG , Hongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473
Zeyuan WANG , Songzhi ZHENG , Hao LI , Jingbo WENG , Wei WANG , Yang WANG , Weihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021
Shengjuan Huo , Xiaoyan Zhang , Xiangheng Li , Xiangning Li , Tianfang Chen , Yuting Shen . Unveiling the Marvels of Titanium: Popularizing Multifunctional Colored Titanium Product Films. University Chemistry, 2024, 39(5): 184-192. doi: 10.3866/PKU.DXHX202310127
Jinfu Ma , Hui Lu , Jiandong Wu , Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052
Xiaomei Ning , Liang Zhan , Xiaosong Zhou , Jin Luo , Xunfu Zhou , Cuifen Luo . Preparation and Electro-Oxidation Performance of PtBi Supported on Carbon Cloth: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 217-224. doi: 10.3866/PKU.DXHX202401085
Pengyu Dong , Yue Jiang , Zhengchi Yang , Licheng Liu , Gu Li , Xinyang Wen , Zhen Wang , Xinbo Shi , Guofu Zhou , Jun-Ming Liu , Jinwei Gao . NbSe2纳米片优化钙钛矿太阳能电池的埋底界面. Acta Physico-Chimica Sinica, 2025, 41(3): 2407025-. doi: 10.3866/PKU.WHXB202407025
Yueguang Chen , Wenqiang Sun . “Carbon” Adventures. University Chemistry, 2024, 39(9): 248-253. doi: 10.3866/PKU.DXHX202308074
Peng XU , Shasha WANG , Nannan CHEN , Ao WANG , Dongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239
Yonghui ZHOU , Rujun HUANG , Dongchao YAO , Aiwei ZHANG , Yuhang SUN , Zhujun CHEN , Baisong ZHU , Youxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373
Lei Shu , Zimin Duan , Yushen Kang , Zijian Zhao , Hong Wang , Lihua Zhu , Hui Xiong , Nan Wang . An Exploration of the CO2-Involved Carbon Cycle World. University Chemistry, 2024, 39(5): 144-153. doi: 10.3866/PKU.DXHX202309084
Yu Li , Lanlan Song , Hongxiu Zhang . Exploring the Innovation in Teaching Principles of Chemical Engineering: Emphasizing Foundational Knowledge and Practical Skills. University Chemistry, 2024, 39(8): 91-98. doi: 10.3866/PKU.DXHX202312087
(a)Device structure comparison between HTM-PSCs and C-PSCs. (b)Energy level structure of perovskite materials, TiO2, Spiro-OMeTAD and C[17]. (c)Efficiency evolution of C-PSCs
(a)Working principle of C-PSCs; (b)Meso-C-PSCs[18]; (c)Embedment C-PSCs[24]; (d)Paintable C-PSCs[23]
(a)Planar structure[26]; (b)Mesoporous structure[23]; (c)1D nanoarray structure[26]
(a)organic-inorganic hybrid perovskite; (b)inorganic perovskite
(a)carbon black electrode[42]; (b)carbon nanotube electrode[42]; (c)graphite electrode[42]; (d)graphene electrode[44]; (e)carbon black/graphite electrode[18]