Citation: WANG Meng, YANG Huai. Electrically Responsive Properties of Carbon Nanotube-doped Polymer-stabilized Blue Phase[J]. Chinese Journal of Applied Chemistry, ;2018, 35(8): 969-971. doi: 10.11944/j.issn.1000-0518.2018.08.180139 shu

Electrically Responsive Properties of Carbon Nanotube-doped Polymer-stabilized Blue Phase

  • Corresponding author: YANG Huai, yanghuai@pku.edu.cn
  • Received Date: 2 May 2018
    Revised Date: 15 May 2018
    Accepted Date: 16 May 2018

    Fund Project: Supported by the National Natural Science Foundation of China(No.51333001)the National Natural Science Foundation of China 51333001

Figures(2)

  • The thermal stability and electrically responsive ability of composite material systems consist of polymer-stabilized blue phase(PSBP) and multi-wall carbon nanotubes(MWNTs) in different size were studied. The threshold voltages of electric field-induced broadening of reflection spectra can be greatly decreased by doping MWNTs, and it is found that the effect is closely related to the size of MWNTs. The threshold electric field strength is successfully decreased to about 0.1 V/μm in the MWNTs doped PSBP liquid crystalline photonic crystal, and the bandwidth is broadened from 20 nm to 310 nm under electric field with 1.3 V/μm. The materials are promising to be applied in areas of reflective-mode displays or tunable optical filters.
  • 加载中
    1. [1]

      Arico A S, Bruce P, Scrosati B. Nanostructured Materials for Advanced Energy Conversion and Storage Devices[J]. Nat Mater, 2005,4(5):366-377. doi: 10.1038/nmat1368

    2. [2]

      Photinos D J. Handbook of Liquid Crystals[M]. Verlag Chemie, 2014:133-155.

    3. [3]

      WANG Xinjiu. Liquid Crystal Optics and Liquid Crystal Displays[M]. Beijing:Science Press, 2006.

    4. [4]

      Zhou W, Lin L, Zhao D. Synthesis of Nickel Bowl-like Nanoparticles and Their Doping for Inducing Planar Alignment of a Nematic Liquid Crystal[J]. J Am Chem Soc, 2011,133(22):8389-8391. doi: 10.1021/ja201101p

    5. [5]

      Zhao D, Zhou W, Cui X. Alignment of Liquid Crystals Doped with Nickel Nanoparticles Containing Different Morphologies[J]. Adv Mater, 2011,23(48):5779-5784. doi: 10.1002/adma.v23.48

    6. [6]

      Liu B, Ma Y, Zhao D. Effects of Morphology and Concentration of CuS Nanoparticles on Alignment and Electro-optic Properties of Nematic Liquid Crystal[J]. Nano Res, 2017,10(2):18-625.  

    7. [7]

      Gharbi M A, Manet S, Lhermitte J. Reversible Nanoparticle Cubic Lattices in Blue Phase Liquid Crystals[J]. ACS Nano, 2016,10(3):3410-3415. doi: 10.1021/acsnano.5b07379

    8. [8]

      Nealon G L, Greget R, Dominguez C. Liquid-Crystalline Nanoparticles:Hybrid Design and Mesophase Structures[J]. Beilstein J Org Chem, 2012,8(1):349-370.  

    9. [9]

      Wang L, He W, Xiao X. Low Voltage and Hysteresis-Free Blue Phase Liquid Crystal Dispersed by Ferroelectric Nanoparticles[J]. J Mater Chem, 2012,22(37):19629-19633. doi: 10.1039/c2jm34013e

    10. [10]

      Qi H, Hegmann T. Impact of Nanoscale Particles and Carbon Nanotubes on Current and Future Generations of Liquid Crystal Displays[J]. J Mater Chem, 2008,18(28):3288-3294. doi: 10.1039/b718920f

    11. [11]

      Basu R, Kinnamon D, Garvey A. Nano-Electromechanical Rotation of Graphene and Giant Enhancement in Dielectric Anisotropy in a Liquid Crystal[J]. Appl Phys Lett, 2015,106(20)1197.  

    12. [12]

      Rahman M D A, Mohd Said S, Balamurugan S. Blue Phase Liquid Crystal:Strategies for Phase Stabilization and Device Development[J]. Sci Technol Adv Mater, 2016,16(3)033501.  

    13. [13]

      Wang M, Zou C, Sun J. Asymmetric Tunable Photonic Bandgaps in Self-Organized 3D Nanostructure of Polymer-Stabilized Blue Phase Ⅰ Modulated by Voltage Polarity[J]. Adv Func Mater, 2017,27(46)1702261. doi: 10.1002/adfm.v27.46

    14. [14]

      Baughman R H, Zakhidov A A, de Heer W A. Carbon Nanotubes-The Route Toward Applications[J]. Science, 2002,297(5582):787-792. doi: 10.1126/science.1060928

  • 加载中
    1. [1]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    2. [2]

      Haihua Yang Minjie Zhou Binhong He Wenyuan Xu Bing Chen Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100

    3. [3]

      Bowen YangRui WangBenjian XinLili LiuZhiqiang Niu . C-SnO2/MWCNTs Composite with Stable Conductive Network for Lithium-based Semi-Solid Flow Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 2310024-0. doi: 10.3866/PKU.WHXB202310024

    4. [4]

      Shuhong XiangLv YangYingsheng XuGuoxin CaoHongjian Zhou . Selective electrosorption of Cs(Ⅰ) from high-salinity radioactive wastewater using CNT-interspersed potassium zinc ferrocyanide electrodes. Acta Physico-Chimica Sinica, 2025, 41(9): 100097-0. doi: 10.1016/j.actphy.2025.100097

    5. [5]

      Chen PuDaijie DengHenan LiLi Xu . Fe0.64Ni0.36@Fe3NiN Core-Shell Nanostructure Encapsulated in N-Doped Carbon Nanotubes for Rechargeable Zinc-Air Batteries with Ultralong Cycle Stability. Acta Physico-Chimica Sinica, 2024, 40(2): 2304021-0. doi: 10.3866/PKU.WHXB202304021

    6. [6]

      Xiaojun LiuLang QinYanlei Yu . Dynamic Manipulation of Photonic Bandgaps in Cholesteric Liquid Crystal Microdroplets for Applications. Acta Physico-Chimica Sinica, 2024, 40(5): 2305018-0. doi: 10.3866/PKU.WHXB202305018

    7. [7]

      Ke QiuFengmei WangMochou LiaoKerun ZhuJiawei ChenWei ZhangYongyao XiaXiaoli DongFei Wang . A Fumed SiO2-based Composite Hydrogel Polymer Electrolyte for Near-Neutral Zinc-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(3): 2304036-0. doi: 10.3866/PKU.WHXB202304036

    8. [8]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    9. [9]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    10. [10]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    11. [11]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    12. [12]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    13. [13]

      Lijun Yue Siya Liu Peng Liu . 不同晶相纳米MnO2的制备及其对生物乙醇选择性氧化催化性能的测试——一个科研转化的综合化学实验. University Chemistry, 2025, 40(8): 225-232. doi: 10.12461/PKU.DXHX202410005

    14. [14]

      Gaoyan Chen Chaoyue Wang Juanjuan Gao Junke Wang Yingxiao Zong Kin Shing Chan . Heart to Heart: Exploring Cardiac CT. University Chemistry, 2024, 39(9): 146-150. doi: 10.12461/PKU.DXHX202402011

    15. [15]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    16. [16]

      Qianping Li Hua Guan Changfeng Wan Yonghai Song Jianwen Jiang . 大学有机化学复习课项目式教学——以“液晶化合物4-正戊基苯甲酸-4′-正戊基苯酯的合成路线设计与产品制备”为例. University Chemistry, 2025, 40(8): 100-116. doi: 10.12461/PKU.DXHX202410070

    17. [17]

      Fanpeng MengFei ZhaoJingkai LinJinsheng ZhaoHuayang ZhangShaobin Wang . Optimizing interfacial electric fields in carbon nitride nanosheet/spherical conjugated polymer S-scheme heterojunction for hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(8): 100095-0. doi: 10.1016/j.actphy.2025.100095

    18. [18]

      Hanmei LüXin ChenQifu SunNing ZhaoXiangxin Guo . Uniform Garnet Nanoparticle Dispersion in Composite Polymer Electrolytes. Acta Physico-Chimica Sinica, 2024, 40(3): 2305016-0. doi: 10.3866/PKU.WHXB202305016

    19. [19]

      Xiaojing TianZhichun HuangQingsong ZhangXu WangNing YangNanping Deng . PNIPAm Thermo-Responsive Nanofibers Mats: Morphological Stability and Response Behavior under Cross-Linking. Acta Physico-Chimica Sinica, 2024, 40(4): 2304037-0. doi: 10.3866/PKU.WHXB202304037

    20. [20]

      Dongdong Yao JunweiGu Yi Yan Junliang Zhang Yaping Zheng . Teaching Phase Separation Mechanism in Polymer Blends Using Process Representation Teaching Method: A Teaching Design for Challenging Theoretical Concepts in “Polymer Structure and Properties” Course. University Chemistry, 2025, 40(4): 131-137. doi: 10.12461/PKU.DXHX202408125

Metrics
  • PDF Downloads(2)
  • Abstract views(533)
  • HTML views(78)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return