Mechanistic Understanding of Plasmon-induced Hot Electron Injection for Photocatalytic and Photoelectrochemical Solar-to-Fuel Generation
- Corresponding author: ZHANG Jiatao, zhangjt@bit.edu.cn
Citation:
LIU Jia, PAN Rongrong, ZHANG Erhuan, LI Yuemei, LIU Jiajia, XU Meng, RONG Hongpan, CHEN Wenxing, ZHANG Jiatao. Mechanistic Understanding of Plasmon-induced Hot Electron Injection for Photocatalytic and Photoelectrochemical Solar-to-Fuel Generation[J]. Chinese Journal of Applied Chemistry,
;2018, 35(8): 890-901.
doi:
10.11944/j.issn.1000-0518.2018.08.180133
Ma Y, Wang X L, Jia Y S. Titanium Dioxide-Based Nanomaterials for Photocatalytic Fuel Generations[J]. Chem Rev, 2014,114(19):9987-10043. doi: 10.1021/cr500008u
Chen S S, Takata T, Domen K. Particulate Photocatalyst for Overall Water Splitting[J]. Nat Rev Mater, 2017,217050. doi: 10.1038/natrevmats.2017.50
Fujishima A, Honda K. Electrochemical Photolysis of Water at a Semiconductor Electrode[J]. Nature, 1972,238:37-38. doi: 10.1038/238037a0
Linic S, Christopher P, Ingram D B. Plasmonic-Metal Nanostructures for Efficent Conversion of Solar to Chemical Energy[J]. Nat Mater, 2011,10:911-921. doi: 10.1038/nmat3151
Brongersm M L, Halas N J, Nordlander P. Plasmon-Induced Hot Carrier Science and Technology[J]. Nat Nanotechnol, 2015,10:25-34. doi: 10.1038/nnano.2014.311
Wang M Y, Ye M D, Iocozzia J. Plasmon-Mediated Solar Energy Conversion via Photocatalysis in Nobel Metal/Semicondcutor Composites[J]. Adv Sci, 2016,3(6)1600024. doi: 10.1002/advs.201600024
Zhang P, Wang T, Gong J L. Mechanistic Understading of the Plasmonic Enhancement for Solar Water Splitting[J]. Adv Mater, 2015,27(36):5328-5342. doi: 10.1002/adma.201500888
Jiang R B, Li B X, Fang C H. Metal/Semicondcutor Hybrid Nanostructures for Plasmon-Enhanced Applications[J]. Adv Mater, 2014,26(31):5274-5309. doi: 10.1002/adma.201400203
Cushing S K, Li J T, Meng F K. Photocatalytic Activity Enhanced by Plasmonic Resonant Energy Transfer from Metal to Semiconductor[J]. J Am Chem Soc, 2012,134(36):15033-15041. doi: 10.1021/ja305603t
Ingram D B, Christopher P, Bauer J L. Predictive Model for the Design of Plasmonic Metal/Semicondcutor Composite Photocatalysts[J]. ACS Catal, 2011,1(10):1441-1447. doi: 10.1021/cs200320h
Govorov A O, Zhang H, Gun'ko Y K. Theory of Photoinjection of Hot Plasmonic Carriers from Metal Nanostructures into Semiconductors and Surface Molecules[J]. J Phys Chem C, 2013,117(32):16616-16631. doi: 10.1021/jp405430m
SHAN Hangyong, ZU Shuai, FANG Zheyu. Research Progress in Ultrafast Dynamics of Plasmonic Hot Electrons[J]. Laser Optoelectron Prog, 2017,54030002.
Smith J G, Faucheaux J A, Jain P K. Plsamon Resonances for Solar Energy Harvesting:A Mechanistic Outlook[J]. Nano Today, 2015,10(1):67-80. doi: 10.1016/j.nantod.2014.12.004
Clavero C. Plasmon-Induced Hot-Electron Generation at Nanoparticle/Metal-Oxide Interfaces for Photovoltaic and Photocatalytic Devices[J]. Nat Photon, 2014,8:95-103. doi: 10.1038/nphoton.2013.238
Park J Y, Baker L R, Somorjai G A. Role of Hot Electrons and Metal-Oxide Interfaces in Surface Chmeistry and Catalytic Reaction[J]. Chem Rev, 2015,115(8):2781-2817. doi: 10.1021/cr400311p
Khurgin J B. How to Deal with the Loss in Plasmonics and Metamateirals[J]. Nat Nanotechnol, 2015,10:2-6. doi: 10.1038/nnano.2014.310
Bian Z F, Tachikawa T, Zhang P. Au/TiO2 Superstructure-Based Plasmonic Photocatalysts Exhibiting Efficient Charge Separation and Unprecendented Activity[J]. J Am Chem Soc, 2014,136(1):458-465. doi: 10.1021/ja410994f
Lambright S, Butaeva E, Razgoniaeva N. Enhanced Lifetime of Excitons in Nonepitaxial Au/CdS Core/Shell Nanocrystals[J]. ACS Nano, 2014,8(1):352-361. doi: 10.1021/nn404264w
Yu S J, Kim Y H, Lee S Y. Hot-Electron-Transfer Enhancement for Efficient Energy Conversion of Visible Light[J]. Angew Chem Int Ed, 2014,126(42):11203-11207.
Liu L Q, Li P, Adisak B. Gold Photosensitiezed SrTiO3 for Visible-Light Water Oxidation Induced by Au Interband Transitions[J]. J Mater Chem A, 2014,2(25):9875-9882. doi: 10.1039/c4ta01988a
Wu B H, Liu D Y, Mubeen S. Anisotropic Growth of TiO2 onto Gold Nanorods for Plamon-Enhanced Hydrogen Production from Water Reduction[J]. J Am Chem Soc, 2016,138(4):1114-1117. doi: 10.1021/jacs.5b11341
Zhao Q, Ji M W, Qian H M. Controlling Structural Symmerty of Hybrid Nanostructure and Its Effect on Efficient Photocatalytic Hydrogen Evolution[J]. Adv Mater, 2014,26(9):1387-1392. doi: 10.1002/adma.201304652
Long R, Mao K K, Gong M. Tunable Oxygen Activation for Catalytic Organic Oxidation:Schottky Junction versus Plasmonic Effects[J]. Angew Chem Int Ed, 2014,53(12):3205-3209. doi: 10.1002/anie.201309660
Tian Y, Tatsuma T. Mechanisms and Applications of Plasmon-Induced Charge Separation at TiO2 Films Loaded with Gold Nanoparticles[J]. J Am Chem Soc, 2005,127(20):7632-7637. doi: 10.1021/ja042192u
Furube A, Du L C, Hara K. Ultrafast Plasmon-Induced Electron Transfer from Gold Nanorods into TiO2 Nanoparticles[J]. J Am Chem Soc, 2007,129(48):14852-14853. doi: 10.1021/ja076134v
Wu K F, Rodriguez-Cordoba W E, Yang Y. Plasmon-Induced Hot Electron Transfer from the Au Tip to CdS Rod in CdS-Au Nanoheterostructures[J]. Nano Lett, 2013,13(11):5255-5263. doi: 10.1021/nl402730m
Liu J, Feng J W, Gui J. Metal@Semiconductor Core-Shell Nanocrystals with Atomically Organized Interfaces for Efficient Hot Electron-Mediated Photocatalysis[J]. Nano Energy, 2018,48:44-52. doi: 10.1016/j.nanoen.2018.02.040
Xiao J D, Han L L, Luo J. Integration of Plasmonic Effects and Schottky Junction into Metal-Organic Framework Composites:Steering Charge Flow for Enhanced Visible-Light Photocatalysis[J]. Angew Chem Int Ed, 2018,57(4):1103-1107. doi: 10.1002/anie.201711725
Wang S Y, Gao Y Y, Miao S. Positioning the Water Oxidation Reaction Sites in Plasmonic Photocatalysts[J]. J Am Chem Soc, 2017,139(34):11771-11778. doi: 10.1021/jacs.7b04470
Bai S, Li X Y, Kong Q. Toward Enhanced Photocatalytic Oxygen Evolution:Synergetic Utilization of Plasmonic Effect and Schottky Junction via Interfacing Facet Selection[J]. Adv Mater, 2015,27(22):3444-3452. doi: 10.1002/adma.v27.22
Liu G H, Du K, Xu J L. Plasmon-Dominated Photoelectrodes for Solar Water Splitting[J]. J Mater Chem A, 2017,5(9):4233-4253. doi: 10.1039/C6TA10471A
Yu J G, Dai G P, Huang B B. Fabrication and Characterization of Visible-Light-Driven Plasmonic Photocatalyst Ag/AgCl/TiO2 Nanotube Array[J]. J Phys Chem C, 2009,113(37):16394-16401. doi: 10.1021/jp905247j
Zhang X, Liu Y, Lee S T. Coupling Surface Plasmon Resonance of Gold Nanoparticles with Slow-Photon-Effect of TiO2 Photonic Crystals for Synertistically Enhanced Photoelectrochemical Water Splitting[J]. Energy Environ Sci, 2014,7(4):1409-1419. doi: 10.1039/c3ee43278e
Zhang C L, Shao M F, Ning F Y. Au Nanoparticles Sensitized ZnO Nanorod@Nanoplatelet Core-Shell Arrays for Enhanced Photoelectrochemical Water Splitting[J]. Nano Energy, 2015,12:231-239. doi: 10.1016/j.nanoen.2014.12.037
Huang L, Zheng J J, Huang L L. Controlled Synthesis and Flexible Self-Assembly of Monodisperse Au@Semiconductor Core-Shell Hetero-Nanocrystals into Diverse Superstructures[J]. Chem Mater, 2017,29(5):2355-2363. doi: 10.1021/acs.chemmater.7b00046
Lee J, Mubeen S, Ji X L. Plasmonic Photoanodes for Solar Water Splitting with Visible Light[J]. Nano Lett, 2012,12(9):5014-5019. doi: 10.1021/nl302796f
Li J T, Cushing S K, Zheng P. Solar Hydrogen Generation by a CdS-Au-TiO2 Sandwich Array Enhanced with Au Nanoparticle as Electron Realy and Plasmonic Photosensitizer[J]. J Am Chem Soc, 2014,136(23):8438-8449. doi: 10.1021/ja503508g
Wang X T, Liow C H, Qi D P. Programmble Photo-Electrochemical Hydrogen Evolution Based on Multi-Segmented CdS-Au Nanorod Arrays[J]. Adv Mater, 2014,26(21):3506-3512. doi: 10.1002/adma.v26.21
Heng Chen , Longhui Nie , Kai Xu , Yiqiong Yang , Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019
Jianyin He , Liuyun Chen , Xinling Xie , Zuzeng Qin , Hongbing Ji , Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030
Wenxiu Yang , Jinfeng Zhang , Quanlong Xu , Yun Yang , Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014
Zijian Jiang , Yuang Liu , Yijian Zong , Yong Fan , Wanchun Zhu , Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101
Chenye An , Abiduweili Sikandaier , Xue Guo , Yukun Zhu , Hua Tang , Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019
Qin Hu , Liuyun Chen , Xinling Xie , Zuzeng Qin , Hongbing Ji , Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024
Ke Li , Chuang Liu , Jingping Li , Guohong Wang , Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009
Tong Zhou , Xue Liu , Liang Zhao , Mingtao Qiao , Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020
Shijie Li , Ke Rong , Xiaoqin Wang , Chuqi Shen , Fang Yang , Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005
Guoqiang Chen , Zixuan Zheng , Wei Zhong , Guohong Wang , Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021
Xinyu Yin , Haiyang Shi , Yu Wang , Xuefei Wang , Ping Wang , Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007
Qin Li , Huihui Zhang , Huajun Gu , Yuanyuan Cui , Ruihua Gao , Wei-Lin Dai . In situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 100031-. doi: 10.3866/PKU.WHXB202402016
Yang Xia , Kangyan Zhang , Heng Yang , Lijuan Shi , Qun Yi . 构建双通道路径增强iCOF/Bi2O3 S型异质结在纯水体系中光催化合成H2O2性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-. doi: 10.3866/PKU.WHXB202407012
Changjun You , Chunchun Wang , Mingjie Cai , Yanping Liu , Baikang Zhu , Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
Yuanyin Cui , Jinfeng Zhang , Hailiang Chu , Lixian Sun , Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016
Xuejiao Wang , Suiying Dong , Kezhen Qi , Vadim Popkov , Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005
Ruolin CHENG , Haoran WANG , Jing REN , Yingying MA , Huagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029
(a)The excitation of a localized surface plasmon redirects the flow of light towards and into the nanoparticle. (b)In the first 1~100 fs following Landau damping, the athermal distribution of electron-hole pairs decays through carrier multiplication caused by electron-electron interaction. (c)The hot electrons will redistribute their energy by electron-electron scattering processes on a timescale ranging from 100 fs to 1 ps. (d)Finally, heat is transferred to the surroundings of the metallic structure on a longer timescale ranging from 100 ps to 10 ns via thermal conduction
(a)Excitation of the electrons from thermal equilibrium to a high-energy state upon absorbing photons and injection of the electrons to the CB of the semiconductor. (b)Redistribution of electron energy and formation of a Fermi-Dirac distribution at a high-temperature Fermi level after the injection of the electrons. (c)Restoration of the standard electron distribution with electrons and holes flowing to different regions in the semiconductor