Citation: LIU Jia, PAN Rongrong, ZHANG Erhuan, LI Yuemei, LIU Jiajia, XU Meng, RONG Hongpan, CHEN Wenxing, ZHANG Jiatao. Mechanistic Understanding of Plasmon-induced Hot Electron Injection for Photocatalytic and Photoelectrochemical Solar-to-Fuel Generation[J]. Chinese Journal of Applied Chemistry, ;2018, 35(8): 890-901. doi: 10.11944/j.issn.1000-0518.2018.08.180133 shu

Mechanistic Understanding of Plasmon-induced Hot Electron Injection for Photocatalytic and Photoelectrochemical Solar-to-Fuel Generation

  • Corresponding author: ZHANG Jiatao, zhangjt@bit.edu.cn
  • Received Date: 26 April 2018
    Revised Date: 14 June 2018
    Accepted Date: 15 June 2018

    Fund Project: the National Natural Science Foundation of China 51631001Supported by the National Natural Science Foundation of China(No.51702016, No.51631001, No.91323301, No.51501010)the National Natural Science Foundation of China 51501010the National Natural Science Foundation of China 91323301the National Natural Science Foundation of China 51702016

Figures(11)

  • Hot electrons derived from the surface plasmon resonance of metallic nanocrystals have been demonstrated to play a promising role in promoting the efficiency of photocatalytic and photoelectrochemical solar-to-fuel generation. In this review, we try to describe the underlying mechanisms of the generation and relaxation process of hot electrons, give a discussion on the key factors that affect the efficiency of hot electron injection from metal to semiconductor, and provide an overview of the research progress on hot electron-mediated photocatalytic and photoelectrochemical water splitting. This review also outlines the critical limitations in current studies and sheds light on the possible future developments in this research field.
  • 加载中
    1. [1]

      Ma Y, Wang X L, Jia Y S. Titanium Dioxide-Based Nanomaterials for Photocatalytic Fuel Generations[J]. Chem Rev, 2014,114(19):9987-10043. doi: 10.1021/cr500008u

    2. [2]

      Chen S S, Takata T, Domen K. Particulate Photocatalyst for Overall Water Splitting[J]. Nat Rev Mater, 2017,217050. doi: 10.1038/natrevmats.2017.50

    3. [3]

      Fujishima A, Honda K. Electrochemical Photolysis of Water at a Semiconductor Electrode[J]. Nature, 1972,238:37-38. doi: 10.1038/238037a0

    4. [4]

      Linic S, Christopher P, Ingram D B. Plasmonic-Metal Nanostructures for Efficent Conversion of Solar to Chemical Energy[J]. Nat Mater, 2011,10:911-921. doi: 10.1038/nmat3151

    5. [5]

      Brongersm M L, Halas N J, Nordlander P. Plasmon-Induced Hot Carrier Science and Technology[J]. Nat Nanotechnol, 2015,10:25-34. doi: 10.1038/nnano.2014.311

    6. [6]

      Wang M Y, Ye M D, Iocozzia J. Plasmon-Mediated Solar Energy Conversion via Photocatalysis in Nobel Metal/Semicondcutor Composites[J]. Adv Sci, 2016,3(6)1600024. doi: 10.1002/advs.201600024

    7. [7]

      Zhang P, Wang T, Gong J L. Mechanistic Understading of the Plasmonic Enhancement for Solar Water Splitting[J]. Adv Mater, 2015,27(36):5328-5342. doi: 10.1002/adma.201500888

    8. [8]

      Jiang R B, Li B X, Fang C H. Metal/Semicondcutor Hybrid Nanostructures for Plasmon-Enhanced Applications[J]. Adv Mater, 2014,26(31):5274-5309. doi: 10.1002/adma.201400203

    9. [9]

      Cushing S K, Li J T, Meng F K. Photocatalytic Activity Enhanced by Plasmonic Resonant Energy Transfer from Metal to Semiconductor[J]. J Am Chem Soc, 2012,134(36):15033-15041. doi: 10.1021/ja305603t

    10. [10]

      Ingram D B, Christopher P, Bauer J L. Predictive Model for the Design of Plasmonic Metal/Semicondcutor Composite Photocatalysts[J]. ACS Catal, 2011,1(10):1441-1447. doi: 10.1021/cs200320h

    11. [11]

      Govorov A O, Zhang H, Gun'ko Y K. Theory of Photoinjection of Hot Plasmonic Carriers from Metal Nanostructures into Semiconductors and Surface Molecules[J]. J Phys Chem C, 2013,117(32):16616-16631. doi: 10.1021/jp405430m

    12. [12]

      SHAN Hangyong, ZU Shuai, FANG Zheyu. Research Progress in Ultrafast Dynamics of Plasmonic Hot Electrons[J]. Laser Optoelectron Prog, 2017,54030002.  

    13. [13]

      Smith J G, Faucheaux J A, Jain P K. Plsamon Resonances for Solar Energy Harvesting:A Mechanistic Outlook[J]. Nano Today, 2015,10(1):67-80. doi: 10.1016/j.nantod.2014.12.004

    14. [14]

      Clavero C. Plasmon-Induced Hot-Electron Generation at Nanoparticle/Metal-Oxide Interfaces for Photovoltaic and Photocatalytic Devices[J]. Nat Photon, 2014,8:95-103. doi: 10.1038/nphoton.2013.238

    15. [15]

      Park J Y, Baker L R, Somorjai G A. Role of Hot Electrons and Metal-Oxide Interfaces in Surface Chmeistry and Catalytic Reaction[J]. Chem Rev, 2015,115(8):2781-2817. doi: 10.1021/cr400311p

    16. [16]

      Khurgin J B. How to Deal with the Loss in Plasmonics and Metamateirals[J]. Nat Nanotechnol, 2015,10:2-6. doi: 10.1038/nnano.2014.310

    17. [17]

      Bian Z F, Tachikawa T, Zhang P. Au/TiO2 Superstructure-Based Plasmonic Photocatalysts Exhibiting Efficient Charge Separation and Unprecendented Activity[J]. J Am Chem Soc, 2014,136(1):458-465. doi: 10.1021/ja410994f

    18. [18]

      Lambright S, Butaeva E, Razgoniaeva N. Enhanced Lifetime of Excitons in Nonepitaxial Au/CdS Core/Shell Nanocrystals[J]. ACS Nano, 2014,8(1):352-361. doi: 10.1021/nn404264w

    19. [19]

      Yu S J, Kim Y H, Lee S Y. Hot-Electron-Transfer Enhancement for Efficient Energy Conversion of Visible Light[J]. Angew Chem Int Ed, 2014,126(42):11203-11207.  

    20. [20]

      Liu L Q, Li P, Adisak B. Gold Photosensitiezed SrTiO3 for Visible-Light Water Oxidation Induced by Au Interband Transitions[J]. J Mater Chem A, 2014,2(25):9875-9882. doi: 10.1039/c4ta01988a

    21. [21]

      Wu B H, Liu D Y, Mubeen S. Anisotropic Growth of TiO2 onto Gold Nanorods for Plamon-Enhanced Hydrogen Production from Water Reduction[J]. J Am Chem Soc, 2016,138(4):1114-1117. doi: 10.1021/jacs.5b11341

    22. [22]

      Zhao Q, Ji M W, Qian H M. Controlling Structural Symmerty of Hybrid Nanostructure and Its Effect on Efficient Photocatalytic Hydrogen Evolution[J]. Adv Mater, 2014,26(9):1387-1392. doi: 10.1002/adma.201304652

    23. [23]

      Long R, Mao K K, Gong M. Tunable Oxygen Activation for Catalytic Organic Oxidation:Schottky Junction versus Plasmonic Effects[J]. Angew Chem Int Ed, 2014,53(12):3205-3209. doi: 10.1002/anie.201309660

    24. [24]

      Tian Y, Tatsuma T. Mechanisms and Applications of Plasmon-Induced Charge Separation at TiO2 Films Loaded with Gold Nanoparticles[J]. J Am Chem Soc, 2005,127(20):7632-7637. doi: 10.1021/ja042192u

    25. [25]

      Furube A, Du L C, Hara K. Ultrafast Plasmon-Induced Electron Transfer from Gold Nanorods into TiO2 Nanoparticles[J]. J Am Chem Soc, 2007,129(48):14852-14853. doi: 10.1021/ja076134v

    26. [26]

      Wu K F, Rodriguez-Cordoba W E, Yang Y. Plasmon-Induced Hot Electron Transfer from the Au Tip to CdS Rod in CdS-Au Nanoheterostructures[J]. Nano Lett, 2013,13(11):5255-5263. doi: 10.1021/nl402730m

    27. [27]

      Liu J, Feng J W, Gui J. Metal@Semiconductor Core-Shell Nanocrystals with Atomically Organized Interfaces for Efficient Hot Electron-Mediated Photocatalysis[J]. Nano Energy, 2018,48:44-52. doi: 10.1016/j.nanoen.2018.02.040

    28. [28]

      Xiao J D, Han L L, Luo J. Integration of Plasmonic Effects and Schottky Junction into Metal-Organic Framework Composites:Steering Charge Flow for Enhanced Visible-Light Photocatalysis[J]. Angew Chem Int Ed, 2018,57(4):1103-1107. doi: 10.1002/anie.201711725

    29. [29]

      Wang S Y, Gao Y Y, Miao S. Positioning the Water Oxidation Reaction Sites in Plasmonic Photocatalysts[J]. J Am Chem Soc, 2017,139(34):11771-11778. doi: 10.1021/jacs.7b04470

    30. [30]

      Bai S, Li X Y, Kong Q. Toward Enhanced Photocatalytic Oxygen Evolution:Synergetic Utilization of Plasmonic Effect and Schottky Junction via Interfacing Facet Selection[J]. Adv Mater, 2015,27(22):3444-3452. doi: 10.1002/adma.v27.22

    31. [31]

      Liu G H, Du K, Xu J L. Plasmon-Dominated Photoelectrodes for Solar Water Splitting[J]. J Mater Chem A, 2017,5(9):4233-4253. doi: 10.1039/C6TA10471A

    32. [32]

      Yu J G, Dai G P, Huang B B. Fabrication and Characterization of Visible-Light-Driven Plasmonic Photocatalyst Ag/AgCl/TiO2 Nanotube Array[J]. J Phys Chem C, 2009,113(37):16394-16401. doi: 10.1021/jp905247j

    33. [33]

      Zhang X, Liu Y, Lee S T. Coupling Surface Plasmon Resonance of Gold Nanoparticles with Slow-Photon-Effect of TiO2 Photonic Crystals for Synertistically Enhanced Photoelectrochemical Water Splitting[J]. Energy Environ Sci, 2014,7(4):1409-1419. doi: 10.1039/c3ee43278e

    34. [34]

      Zhang C L, Shao M F, Ning F Y. Au Nanoparticles Sensitized ZnO Nanorod@Nanoplatelet Core-Shell Arrays for Enhanced Photoelectrochemical Water Splitting[J]. Nano Energy, 2015,12:231-239. doi: 10.1016/j.nanoen.2014.12.037

    35. [35]

      Huang L, Zheng J J, Huang L L. Controlled Synthesis and Flexible Self-Assembly of Monodisperse Au@Semiconductor Core-Shell Hetero-Nanocrystals into Diverse Superstructures[J]. Chem Mater, 2017,29(5):2355-2363. doi: 10.1021/acs.chemmater.7b00046

    36. [36]

      Lee J, Mubeen S, Ji X L. Plasmonic Photoanodes for Solar Water Splitting with Visible Light[J]. Nano Lett, 2012,12(9):5014-5019. doi: 10.1021/nl302796f

    37. [37]

      Li J T, Cushing S K, Zheng P. Solar Hydrogen Generation by a CdS-Au-TiO2 Sandwich Array Enhanced with Au Nanoparticle as Electron Realy and Plasmonic Photosensitizer[J]. J Am Chem Soc, 2014,136(23):8438-8449. doi: 10.1021/ja503508g

    38. [38]

      Wang X T, Liow C H, Qi D P. Programmble Photo-Electrochemical Hydrogen Evolution Based on Multi-Segmented CdS-Au Nanorod Arrays[J]. Adv Mater, 2014,26(21):3506-3512. doi: 10.1002/adma.v26.21

  • 加载中
    1. [1]

      Huasen LuShixu SongQisen JiaGuangbo LiuLuhua Jiang . Advances in Cu2O-based Photocathodes for Photoelectrochemical Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(2): 2304035-0. doi: 10.3866/PKU.WHXB202304035

    2. [2]

      Linfeng XiaoWanlu RenShishi ShenMengshan ChenRunhua LiaoYingtang ZhouXibao Li . Enhancing Photocatalytic Hydrogen Evolution through Electronic Structure and Wettability Adjustment of ZnIn2S4/Bi2O3 S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308036-0. doi: 10.3866/PKU.WHXB202308036

    3. [3]

      Heng ChenLonghui NieKai XuYiqiong YangCaihong Fang . Remarkable Photocatalytic H2O2 Production Efficiency over Ultrathin g-C3N4 Nanosheet with Large Surface Area and Enhanced Crystallinity by Two-Step Calcination. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-0. doi: 10.3866/PKU.WHXB202406019

    4. [4]

      Yifan ZHAOQiyun MAOMeijing GUOGuoying ZHANGTongliang HU . Z-scheme bismuth-based multi-site heterojunction: Synthesis and hydrogen production from photocatalytic hydrogen production. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1318-1330. doi: 10.11862/CJIC.20250001

    5. [5]

      Jianyin HeLiuyun ChenXinling XieZuzeng QinHongbing JiTongming Su . Construction of ZnCoP/CdLa2S4 Schottky Heterojunctions for Enhancing Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-0. doi: 10.3866/PKU.WHXB202404030

    6. [6]

      Wenxiu YangJinfeng ZhangQuanlong XuYun YangLijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-0. doi: 10.3866/PKU.WHXB202312014

    7. [7]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    8. [8]

      Ronghui LI . Photocatalysis performance of nitrogen-doped CeO2 thin films via ion beam-assisted deposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1123-1130. doi: 10.11862/CJIC.20240440

    9. [9]

      Jingzhuo TianChaohong GuanHaobin HuEnzhou LiuDongyuan Yang . Waste plastics promoted photocatalytic H2 evolution over S-scheme NiCr2O4/twinned-Cd0.5Zn0.5S homo-heterojunction. Acta Physico-Chimica Sinica, 2025, 41(6): 100068-0. doi: 10.1016/j.actphy.2025.100068

    10. [10]

      Chenye AnSikandaier AbiduweiliXue GuoYukun ZhuHua TangDongjiang Yang . Hierarchical S-scheme Heterojunction of Red Phosphorus Nanoparticles Embedded Flower-like CeO2 Triggering Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-0. doi: 10.3866/PKU.WHXB202405019

    11. [11]

      Qin HuLiuyun ChenXinling XieZuzeng QinHongbing JiTongming Su . Construction of Electron Bridge and Activation of MoS2 Inert Basal Planes by Ni Doping for Enhancing Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-0. doi: 10.3866/PKU.WHXB202406024

    12. [12]

      Yu WangHaiyang ShiZihan ChenFeng ChenPing WangXuefei Wang . 具有富电子Ptδ壳层的空心AgPt@Pt核壳催化剂:提升光催化H2O2生成选择性与活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-0. doi: 10.1016/j.actphy.2025.100081

    13. [13]

      Yingqi BAIHua ZHAOHuipeng LIXinran RENJun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259

    14. [14]

      Jiajie CaiChang ChengBowen LiuJianjun ZhangChuanjia JiangBei Cheng . CdS/DBTSO-BDTO S-scheme photocatalyst for H2 production and its charge transfer dynamics. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-0. doi: 10.1016/j.actphy.2025.100084

    15. [15]

      Jiawei HuKai XiaAo YangZhihao ZhangWen XiaoChao LiuQinfang Zhang . Interfacial Engineering of Ultrathin 2D/2D NiPS3/C3N5 Heterojunctions for Boosting Photocatalytic H2 Evolution. Acta Physico-Chimica Sinica, 2024, 40(5): 2305043-0. doi: 10.3866/PKU.WHXB202305043

    16. [16]

      Tong ZhouXue LiuLiang ZhaoMingtao QiaoWanying Lei . Efficient Photocatalytic H2O2 Production and Cr(Ⅵ) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-0. doi: 10.3866/PKU.WHXB202309020

    17. [17]

      Shijie LiKe RongXiaoqin WangChuqi ShenFang YangQinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-0. doi: 10.3866/PKU.WHXB202403005

    18. [18]

      Ke LiChuang LiuJingping LiGuohong WangKai Wang . Architecting Inorganic/Organic S-Scheme Heterojunction of Bi4Ti3O12 Coupling with g-C3N4 for Photocatalytic H2O2 Production from Pure Water. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-0. doi: 10.3866/PKU.WHXB202403009

    19. [19]

      Tong WANGQinyue ZHONGQiong HUANGWeimin GUOXinmei LIU . Mn-doped carbon quantum dots/Fe-doped ZnO flower-like microspheres heterojunction: Construction and photocatalytic performance. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1589-1600. doi: 10.11862/CJIC.20250011

    20. [20]

      Guoqiang ChenZixuan ZhengWei ZhongGuohong WangXinhe Wu . Molten Intermediate Transportation-Oriented Synthesis of Amino-Rich g-C3N4 Nanosheets for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-0. doi: 10.3866/PKU.WHXB202406021

Metrics
  • PDF Downloads(106)
  • Abstract views(3235)
  • HTML views(963)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return