Citation: LIU Jia, PAN Rongrong, ZHANG Erhuan, LI Yuemei, LIU Jiajia, XU Meng, RONG Hongpan, CHEN Wenxing, ZHANG Jiatao. Mechanistic Understanding of Plasmon-induced Hot Electron Injection for Photocatalytic and Photoelectrochemical Solar-to-Fuel Generation[J]. Chinese Journal of Applied Chemistry, ;2018, 35(8): 890-901. doi: 10.11944/j.issn.1000-0518.2018.08.180133 shu

Mechanistic Understanding of Plasmon-induced Hot Electron Injection for Photocatalytic and Photoelectrochemical Solar-to-Fuel Generation

  • Corresponding author: ZHANG Jiatao, zhangjt@bit.edu.cn
  • Received Date: 26 April 2018
    Revised Date: 14 June 2018
    Accepted Date: 15 June 2018

    Fund Project: the National Natural Science Foundation of China 51631001Supported by the National Natural Science Foundation of China(No.51702016, No.51631001, No.91323301, No.51501010)the National Natural Science Foundation of China 51501010the National Natural Science Foundation of China 91323301the National Natural Science Foundation of China 51702016

Figures(11)

  • Hot electrons derived from the surface plasmon resonance of metallic nanocrystals have been demonstrated to play a promising role in promoting the efficiency of photocatalytic and photoelectrochemical solar-to-fuel generation. In this review, we try to describe the underlying mechanisms of the generation and relaxation process of hot electrons, give a discussion on the key factors that affect the efficiency of hot electron injection from metal to semiconductor, and provide an overview of the research progress on hot electron-mediated photocatalytic and photoelectrochemical water splitting. This review also outlines the critical limitations in current studies and sheds light on the possible future developments in this research field.
  • 加载中
    1. [1]

      Ma Y, Wang X L, Jia Y S. Titanium Dioxide-Based Nanomaterials for Photocatalytic Fuel Generations[J]. Chem Rev, 2014,114(19):9987-10043. doi: 10.1021/cr500008u

    2. [2]

      Chen S S, Takata T, Domen K. Particulate Photocatalyst for Overall Water Splitting[J]. Nat Rev Mater, 2017,217050. doi: 10.1038/natrevmats.2017.50

    3. [3]

      Fujishima A, Honda K. Electrochemical Photolysis of Water at a Semiconductor Electrode[J]. Nature, 1972,238:37-38. doi: 10.1038/238037a0

    4. [4]

      Linic S, Christopher P, Ingram D B. Plasmonic-Metal Nanostructures for Efficent Conversion of Solar to Chemical Energy[J]. Nat Mater, 2011,10:911-921. doi: 10.1038/nmat3151

    5. [5]

      Brongersm M L, Halas N J, Nordlander P. Plasmon-Induced Hot Carrier Science and Technology[J]. Nat Nanotechnol, 2015,10:25-34. doi: 10.1038/nnano.2014.311

    6. [6]

      Wang M Y, Ye M D, Iocozzia J. Plasmon-Mediated Solar Energy Conversion via Photocatalysis in Nobel Metal/Semicondcutor Composites[J]. Adv Sci, 2016,3(6)1600024. doi: 10.1002/advs.201600024

    7. [7]

      Zhang P, Wang T, Gong J L. Mechanistic Understading of the Plasmonic Enhancement for Solar Water Splitting[J]. Adv Mater, 2015,27(36):5328-5342. doi: 10.1002/adma.201500888

    8. [8]

      Jiang R B, Li B X, Fang C H. Metal/Semicondcutor Hybrid Nanostructures for Plasmon-Enhanced Applications[J]. Adv Mater, 2014,26(31):5274-5309. doi: 10.1002/adma.201400203

    9. [9]

      Cushing S K, Li J T, Meng F K. Photocatalytic Activity Enhanced by Plasmonic Resonant Energy Transfer from Metal to Semiconductor[J]. J Am Chem Soc, 2012,134(36):15033-15041. doi: 10.1021/ja305603t

    10. [10]

      Ingram D B, Christopher P, Bauer J L. Predictive Model for the Design of Plasmonic Metal/Semicondcutor Composite Photocatalysts[J]. ACS Catal, 2011,1(10):1441-1447. doi: 10.1021/cs200320h

    11. [11]

      Govorov A O, Zhang H, Gun'ko Y K. Theory of Photoinjection of Hot Plasmonic Carriers from Metal Nanostructures into Semiconductors and Surface Molecules[J]. J Phys Chem C, 2013,117(32):16616-16631. doi: 10.1021/jp405430m

    12. [12]

      SHAN Hangyong, ZU Shuai, FANG Zheyu. Research Progress in Ultrafast Dynamics of Plasmonic Hot Electrons[J]. Laser Optoelectron Prog, 2017,54030002.  

    13. [13]

      Smith J G, Faucheaux J A, Jain P K. Plsamon Resonances for Solar Energy Harvesting:A Mechanistic Outlook[J]. Nano Today, 2015,10(1):67-80. doi: 10.1016/j.nantod.2014.12.004

    14. [14]

      Clavero C. Plasmon-Induced Hot-Electron Generation at Nanoparticle/Metal-Oxide Interfaces for Photovoltaic and Photocatalytic Devices[J]. Nat Photon, 2014,8:95-103. doi: 10.1038/nphoton.2013.238

    15. [15]

      Park J Y, Baker L R, Somorjai G A. Role of Hot Electrons and Metal-Oxide Interfaces in Surface Chmeistry and Catalytic Reaction[J]. Chem Rev, 2015,115(8):2781-2817. doi: 10.1021/cr400311p

    16. [16]

      Khurgin J B. How to Deal with the Loss in Plasmonics and Metamateirals[J]. Nat Nanotechnol, 2015,10:2-6. doi: 10.1038/nnano.2014.310

    17. [17]

      Bian Z F, Tachikawa T, Zhang P. Au/TiO2 Superstructure-Based Plasmonic Photocatalysts Exhibiting Efficient Charge Separation and Unprecendented Activity[J]. J Am Chem Soc, 2014,136(1):458-465. doi: 10.1021/ja410994f

    18. [18]

      Lambright S, Butaeva E, Razgoniaeva N. Enhanced Lifetime of Excitons in Nonepitaxial Au/CdS Core/Shell Nanocrystals[J]. ACS Nano, 2014,8(1):352-361. doi: 10.1021/nn404264w

    19. [19]

      Yu S J, Kim Y H, Lee S Y. Hot-Electron-Transfer Enhancement for Efficient Energy Conversion of Visible Light[J]. Angew Chem Int Ed, 2014,126(42):11203-11207.  

    20. [20]

      Liu L Q, Li P, Adisak B. Gold Photosensitiezed SrTiO3 for Visible-Light Water Oxidation Induced by Au Interband Transitions[J]. J Mater Chem A, 2014,2(25):9875-9882. doi: 10.1039/c4ta01988a

    21. [21]

      Wu B H, Liu D Y, Mubeen S. Anisotropic Growth of TiO2 onto Gold Nanorods for Plamon-Enhanced Hydrogen Production from Water Reduction[J]. J Am Chem Soc, 2016,138(4):1114-1117. doi: 10.1021/jacs.5b11341

    22. [22]

      Zhao Q, Ji M W, Qian H M. Controlling Structural Symmerty of Hybrid Nanostructure and Its Effect on Efficient Photocatalytic Hydrogen Evolution[J]. Adv Mater, 2014,26(9):1387-1392. doi: 10.1002/adma.201304652

    23. [23]

      Long R, Mao K K, Gong M. Tunable Oxygen Activation for Catalytic Organic Oxidation:Schottky Junction versus Plasmonic Effects[J]. Angew Chem Int Ed, 2014,53(12):3205-3209. doi: 10.1002/anie.201309660

    24. [24]

      Tian Y, Tatsuma T. Mechanisms and Applications of Plasmon-Induced Charge Separation at TiO2 Films Loaded with Gold Nanoparticles[J]. J Am Chem Soc, 2005,127(20):7632-7637. doi: 10.1021/ja042192u

    25. [25]

      Furube A, Du L C, Hara K. Ultrafast Plasmon-Induced Electron Transfer from Gold Nanorods into TiO2 Nanoparticles[J]. J Am Chem Soc, 2007,129(48):14852-14853. doi: 10.1021/ja076134v

    26. [26]

      Wu K F, Rodriguez-Cordoba W E, Yang Y. Plasmon-Induced Hot Electron Transfer from the Au Tip to CdS Rod in CdS-Au Nanoheterostructures[J]. Nano Lett, 2013,13(11):5255-5263. doi: 10.1021/nl402730m

    27. [27]

      Liu J, Feng J W, Gui J. Metal@Semiconductor Core-Shell Nanocrystals with Atomically Organized Interfaces for Efficient Hot Electron-Mediated Photocatalysis[J]. Nano Energy, 2018,48:44-52. doi: 10.1016/j.nanoen.2018.02.040

    28. [28]

      Xiao J D, Han L L, Luo J. Integration of Plasmonic Effects and Schottky Junction into Metal-Organic Framework Composites:Steering Charge Flow for Enhanced Visible-Light Photocatalysis[J]. Angew Chem Int Ed, 2018,57(4):1103-1107. doi: 10.1002/anie.201711725

    29. [29]

      Wang S Y, Gao Y Y, Miao S. Positioning the Water Oxidation Reaction Sites in Plasmonic Photocatalysts[J]. J Am Chem Soc, 2017,139(34):11771-11778. doi: 10.1021/jacs.7b04470

    30. [30]

      Bai S, Li X Y, Kong Q. Toward Enhanced Photocatalytic Oxygen Evolution:Synergetic Utilization of Plasmonic Effect and Schottky Junction via Interfacing Facet Selection[J]. Adv Mater, 2015,27(22):3444-3452. doi: 10.1002/adma.v27.22

    31. [31]

      Liu G H, Du K, Xu J L. Plasmon-Dominated Photoelectrodes for Solar Water Splitting[J]. J Mater Chem A, 2017,5(9):4233-4253. doi: 10.1039/C6TA10471A

    32. [32]

      Yu J G, Dai G P, Huang B B. Fabrication and Characterization of Visible-Light-Driven Plasmonic Photocatalyst Ag/AgCl/TiO2 Nanotube Array[J]. J Phys Chem C, 2009,113(37):16394-16401. doi: 10.1021/jp905247j

    33. [33]

      Zhang X, Liu Y, Lee S T. Coupling Surface Plasmon Resonance of Gold Nanoparticles with Slow-Photon-Effect of TiO2 Photonic Crystals for Synertistically Enhanced Photoelectrochemical Water Splitting[J]. Energy Environ Sci, 2014,7(4):1409-1419. doi: 10.1039/c3ee43278e

    34. [34]

      Zhang C L, Shao M F, Ning F Y. Au Nanoparticles Sensitized ZnO Nanorod@Nanoplatelet Core-Shell Arrays for Enhanced Photoelectrochemical Water Splitting[J]. Nano Energy, 2015,12:231-239. doi: 10.1016/j.nanoen.2014.12.037

    35. [35]

      Huang L, Zheng J J, Huang L L. Controlled Synthesis and Flexible Self-Assembly of Monodisperse Au@Semiconductor Core-Shell Hetero-Nanocrystals into Diverse Superstructures[J]. Chem Mater, 2017,29(5):2355-2363. doi: 10.1021/acs.chemmater.7b00046

    36. [36]

      Lee J, Mubeen S, Ji X L. Plasmonic Photoanodes for Solar Water Splitting with Visible Light[J]. Nano Lett, 2012,12(9):5014-5019. doi: 10.1021/nl302796f

    37. [37]

      Li J T, Cushing S K, Zheng P. Solar Hydrogen Generation by a CdS-Au-TiO2 Sandwich Array Enhanced with Au Nanoparticle as Electron Realy and Plasmonic Photosensitizer[J]. J Am Chem Soc, 2014,136(23):8438-8449. doi: 10.1021/ja503508g

    38. [38]

      Wang X T, Liow C H, Qi D P. Programmble Photo-Electrochemical Hydrogen Evolution Based on Multi-Segmented CdS-Au Nanorod Arrays[J]. Adv Mater, 2014,26(21):3506-3512. doi: 10.1002/adma.v26.21

  • 加载中
    1. [1]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    2. [2]

      Jianyin He Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030

    3. [3]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    4. [4]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    5. [5]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    6. [6]

      Qin Hu Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024

    7. [7]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    8. [8]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    9. [9]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    10. [10]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    11. [11]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    12. [12]

      Qin Li Huihui Zhang Huajun Gu Yuanyuan Cui Ruihua Gao Wei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 100031-. doi: 10.3866/PKU.WHXB202402016

    13. [13]

      Yang Xia Kangyan Zhang Heng Yang Lijuan Shi Qun Yi . 构建双通道路径增强iCOF/Bi2O3 S型异质结在纯水体系中光催化合成H2O2性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-. doi: 10.3866/PKU.WHXB202407012

    14. [14]

      Changjun You Chunchun Wang Mingjie Cai Yanping Liu Baikang Zhu Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014

    15. [15]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    16. [16]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    17. [17]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    18. [18]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    19. [19]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    20. [20]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

Metrics
  • PDF Downloads(106)
  • Abstract views(2835)
  • HTML views(913)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return