Citation: LONG Xia, WANG Yaqiong, JU Min, WANG Zheng, YANG Shihe. Elaboration and Application of Transition Metals Based Layered Double Hydroxides for Electrochemical Water Oxidation[J]. Chinese Journal of Applied Chemistry, ;2018, 35(8): 881-889. doi: 10.11944/j.issn.1000-0518.2018.08.180130 shu

Elaboration and Application of Transition Metals Based Layered Double Hydroxides for Electrochemical Water Oxidation

  • Corresponding author: YANG Shihe, yangsh@pkusz.edu.cn
  • Received Date: 24 April 2018
    Revised Date: 20 June 2018
    Accepted Date: 22 June 2018

    Fund Project: Shenzhen Peacock Plan Program KQTD2016053015544057Supported by the National Natural Science Foundation of China(No.21703003), Shenzhen Peacock Plan Program(No.KQTD2016053015544057)the National Natural Science Foundation of China 21703003

Figures(6)

  • Benefiting from the large specific surface area, open microstructure, tunable interlayer distance and chemical composition, the transition metals based layered double hydroxides(TM LDHs) have been widely applied and studied as efficient catalysts in recent years. This review introduces the design and applications of LDHs for electrochemical catalytic water oxidation. Illustrative examples are given on the origin of the advanced catalytic performance of TM LDHs towards water splitting, by focusing on their chemical compositions, microstructures and electronic properties. Possible strategies for further improving the catalytic performance and future development of TM LDHs are also prospected.
  • 加载中
    1. [1]

      Dresselhaus M S, Thomas I L. Alternative Energy Technologies[J]. Nature, 2001,414(6861):332-337. doi: 10.1038/35104599

    2. [2]

      Crabtree G W, Dresselhaus M S, Buchanan M V. The Hydrogen Economy[J]. Phys Today, 2004,57(12):39-44. doi: 10.1063/1.1878333

    3. [3]

      Turner J A. Sustainable Hydrogen Production[J]. Science, 2004,305(5686):972-974. doi: 10.1126/science.1103197

    4. [4]

      Koper M T M. Thermodynamic Theory of Multi-Electron Transfer Reactions:Implications for Electrocatalysis[J]. J Electroanal Chem, 2011,660(2):254-260. doi: 10.1016/j.jelechem.2010.10.004

    5. [5]

      Long X, Wang Z L, Xiao S. Transition Metal Based Layered Double Hydroxides Tailored for Energy Conversion and Storage[J]. Mater Today, 2016,19(4):213-226. doi: 10.1016/j.mattod.2015.10.006

    6. [6]

      Ma W, Ma R Z, Wang C X. A Superlattice of Alternately Stacked Ni-Fe Hydroxide Nanosheets and Graphene for Efficient Splitting of Water[J]. ACS Nano, 2015,9(2):1977-1984. doi: 10.1021/nn5069836

    7. [7]

      Long X, Li J K, Xiao S. A Strongly Coupled Graphene and FeNi Double Hydroxide Hybrid as an Excellent Electrocatalyst for the Oxygen Evolution Reaction[J]. Angew Chem Int Ed, 2014,53(29):7584-7588. doi: 10.1002/anie.201402822

    8. [8]

      Lu Z, Xu W W, Zhu W. Three-Dimensional NiFe Layered Double Hydroxide Film for High-Efficiency Oxygen Evolution Reaction[J]. Chem Commun, 2014,50(49):6479-6482. doi: 10.1039/C4CC01625D

    9. [9]

      Gerken J B, Shaner S E, Masse R C. A Survey of Diverse Earth Abundant Oxygen Evolution Electrocatalysts Showing Enhanced Activity from Ni-Fe Oxides Containing a Third Metal[J]. Energy Environ Sci, 2014,7(7):2376-2382. doi: 10.1039/C4EE00436A

    10. [10]

      Kim J, Yin X, Tsao K C. Ca2Mn2O5 as Oxygen-Deficient Perovskite Electrocatalyst for Oxygen Evolution Reaction[J]. J Am Chem Soc, 2014,136(42):14646-14649. doi: 10.1021/ja506254g

    11. [11]

      Suntivich J, May K J, Gasteiger H A. A Perovskite Oxide Optimized for Oxygen Evolution Catalysis from Molecular Orbital Principles[J]. Science, 2011,334(6061):1383-1385. doi: 10.1126/science.1212858

    12. [12]

      Lee J G, Hwang J, Hwang H J. A New Family of Perovskite Catalysts for Oxygen-Evolution Reaction in Alkaline Media:BaNiO3 and BaNi0.83O2.5[J]. J Am Chem Soc, 2016,138(10):3541-3547. doi: 10.1021/jacs.6b00036

    13. [13]

      Trotochaud L, Young S L, Ranney J K. Nickel-Iron Oxyhydroxide Oxygen-Evolution Electrocatalysts:The Role of Intentional and Incidental Iron Incorporation[J]. J Am Chem Soc, 2014,136(18):6744-6753. doi: 10.1021/ja502379c

    14. [14]

      Ahn H S, Bard A J. Surface Interrogation Scanning Electrochemical Microscopy of Ni1-xFexOOH(0 < x < 0.27) Oxygen Evolving Catalyst:Kinetics of the "Fast" Iron Sites[J]. J Am Chem Soc, 2016,138(1):313-318. doi: 10.1021/jacs.5b10977

    15. [15]

      Zhang B, Zheng X L, Voznyy O. Homogeneously Dispersed Multimetal Oxygen-Evolving Catalysts[J]. Science, 2016,352(6283):333-337. doi: 10.1126/science.aaf1525

    16. [16]

      Feng J X, Ye S H, Xu H. Design and Synthesis of FeOOH/CeO2 Heterolayered Nanotube Electrocatalysts for the Oxygen Evolution Reaction[J]. Adv Mater, 2016,28(23):4698-4703. doi: 10.1002/adma.v28.23

    17. [17]

      Wang Y Y, Liu D D, Liu Z J. Porous Cobalt-Iron Nitride Nanowires as Excellent Bifunctional Electrocatalysts for Overall Water Splitting[J]. Chem Commun, 2016,52(85):12614-12617. doi: 10.1039/C6CC06608A

    18. [18]

      Yu X Y, Feng Y, Guan B Y. Carbon Coated Porous Nickel Phosphides Nanoplates for Highly Efficient Oxygen Rvolution Reaction[J]. Energy Environ Sci, 2016,9(4):1246-1250. doi: 10.1039/C6EE00100A

    19. [19]

      Li D, Baydoun H, Verani C N. Efficient Water Oxidation Using CoMnP Nanoparticles[J]. J Am Chem Soc, 2016,138(12):4006-4009. doi: 10.1021/jacs.6b01543

    20. [20]

      Wang Q, O'Hare D. Recent Advances in the Synthesis and Application of Layered Double Hydroxide(LDH) Nanosheets[J]. Chem Rev, 2012,112(7):4124-4155. doi: 10.1021/cr200434v

    21. [21]

      Patel R, Park J T, Patel M. Transition-Metal-Based Layered Double Hydroxides Tailored for Energy Conversion and Storage[J]. J Mater Chem A, 2018,6(1):12-29. doi: 10.1039/C7TA09370E

    22. [22]

      Fan G L, Li F, Evans D G. Catalytic Applications of Layered Double Hydroxides:Recent Advances and Perspectives[J]. Chem Soc Rev, 2014,43(20):7040-7066. doi: 10.1039/C4CS00160E

    23. [23]

      Li Z H, Shao M F, An H L. Fast Electrosynthesis of Fe-Containing Layered Double Hydroxide Arrays Toward Highly Efficient Electrocatalytic Oxidation Reactions[J]. Chem Sci, 2015,6(11):6624-6631. doi: 10.1039/C5SC02417J

    24. [24]

      Tang C, Wang H S, Wang H F. Spatially Confined Hybridization of Nanometer-Sized NiFe Hydroxides into Nitrogen-Doped Graphene Frameworks Leading to Superior Oxygen Evolution Reactivity[J]. Adv Mater, 2015,27(30):4516-4522. doi: 10.1002/adma.v27.30

    25. [25]

      Wang Y Y, Zhang Y Q, Liu Z J. Layered Double Hydroxide Nanosheets with Multiple Vacancies Obtained by Dry Exfoliation as Highly Efficient Oxygen Evolution Electrocatalysts[J]. Angew Chem Int Ed, 2017,56(21):5867-5871. doi: 10.1002/anie.201701477

    26. [26]

      Vialat P, Mousty C, Taviot-Gueho C. High-Performing Monometallic Cobalt Layered Double Hydroxide Supercapacitor with Defined Local Structure[J]. Adv Funct Mater, 2014,24(30):4831-4842. doi: 10.1002/adfm.v24.30

    27. [27]

      Nejati K, Akbari A R, Davari S. Zn-Fe-Layered Double Hydroxide Intercalated with Vanadate and Molybdate Anions for Electrocatalytic Water Oxidation[J]. New J Chem, 2018,42(4):2889-2895. doi: 10.1039/C7NJ04469K

    28. [28]

      Li Y, Zhang L, Xiang X. Engineering of ZnCo-Layered Double Hydroxide Nanowalls Toward High-Efficiency Electrochemical Water Oxidation[J]. J Mater Chem A, 2014,2(33):13250-13258. doi: 10.1039/C4TA01275E

    29. [29]

      Zou X, Goswami A, Asefa T. Efficient Noble Metal-Free (Electro)catalysis of Water and Alcohol Oxidations by Zinc-Cobalt Layered Double Hydroxide[J]. J Am Chem Soc, 2013,135(46):17242-17245. doi: 10.1021/ja407174u

    30. [30]

      Long X, Xiao S, Wang Z L. Co Intake Mediated Formation of Ultrathin Nanosheets of Transition Metal LDH-An Advanced Electrocatalyst for Oxygen Evolution Reaction[J]. Chem Commun, 2015,51(6):1120-1123. doi: 10.1039/C4CC08856E

    31. [31]

      Dinh K N, Zheng P L, Dai Z F. Ultrathin Porous NiFeV Ternary Layer Hydroxide Nanosheets as a Highly Efficient Bifunctional Electrocatalyst for Overall Water Splitting[J]. Small, 2018,14(8)1703257. doi: 10.1002/smll.201703257

    32. [32]

      Smith R D L, Prevot M S, Fagan R D. Photochemical Route for Accessing Amorphous Metal Oxide Materials for Water Oxidation Catalysis[J]. Science, 2013,340(6128):60-63. doi: 10.1126/science.1233638

    33. [33]

      Gerken J B, Shaner S E, Masse R C. A Survey of Diverse Earth Abundant Oxygen Evolution Electrocatalysts Showing Rnhanced Activity from Ni-Fe Oxides Containing a Third Metal[J]. Energy Environ Sci, 2014,7(7):2376-2382. doi: 10.1039/C4EE00436A

    34. [34]

      Long X, Ma Z J, Yu H. Porous FeNi Oxide Nanosheets as Advanced Electrochemical Catalysts for Sustained Water Oxidation[J]. J Mater Chem A, 2016,4(39):14939-14943. doi: 10.1039/C6TA05907D

    35. [35]

      Grimaud A, May K J, Carlton C E. Double Perovskites as a Family of Highly Active Catalysts for Oxygen Evolution in Alkaline Solution[J]. Nat Commun, 2013,43439.

    36. [36]

      Klaus S, Cai Y, Louie M W. Effects of Fe Electrolyte Impurities on Ni(OH)2/NiOOH Structure and Oxygen Evolution Activity[J]. J Phys Chem C, 2015,119(13):7243-7254. doi: 10.1021/acs.jpcc.5b00105

    37. [37]

      Corrigan D A. The Catalysis of the Oxygen Evolution Reaction by Iron Impurities in Thin-Film Nickel-Oxide Electrodes[J]. J Electrochem Soc, 1987,134(2):377-384. doi: 10.1149/1.2100463

    38. [38]

      Hunter B M, Hieringer W, Winkler J R. Effect of Interlayer Anions on[NiFe]-LDH Nanosheet Water Oxidation Activity[J]. Energy Environ Sci, 2016,91734. doi: 10.1039/C6EE00377J

    39. [39]

      Gong M, Li Y G, Wang H L. An Advanced Ni-Fe Layered Double Hydroxide Electrocatalyst for Water Oxidation[J]. J Am Chem Soc, 2013,135(23):8452-8455. doi: 10.1021/ja4027715

    40. [40]

      Liu Y W, Hua X M, Xiao C. Heterogeneous Spin States in Ultrathin Nanosheets Induce Subtle Lattice Distortion to Trigger Efficient Hydrogen Evolution[J]. J Am Chem Soc, 2016,138(15):5087-5092. doi: 10.1021/jacs.6b00858

    41. [41]

      Gunjakar J L, Kim T W, Kim H N. Mesoporous Layer-by-Layer Ordered Nanohybrids of Layered Double Hydroxide and Layered Metal Oxide:Highly Active Visible Light Photocatalysts with Improved Chemical Stability[J]. J Am Chem Soc, 2011,133(38):14998-15007. doi: 10.1021/ja203388r

    42. [42]

      Song F, Hu X L. Exfoliation of Layered Double Hydroxides for Enhanced Oxygen Evolution Catalysis[J]. Nat Commun, 2014,55477. doi: 10.1038/ncomms6477

    43. [43]

      Xu X, Song F, Hu X L. A Nickel Iron Diselenide-Derived Efficient Oxygen-Evolution Catalyst[J]. Nat Commun, 2016,712324. doi: 10.1038/ncomms12324

    44. [44]

      Tompsett D A, Parker S C, Islam M S. Rutile (beta-)MnO2 Surfaces and Vacancy Formation for High Electrochemical and Catalytic Performance[J]. J Am Chem Soc, 2014,136(4):1418-1426. doi: 10.1021/ja4092962

    45. [45]

      Bao J, Zhang X D, Fan B. Ultrathin Spinel-Structured Nanosheets Rich in Oxygen Deficiencies for Enhanced Electrocatalytic Water Oxidation[J]. Angew Chem Int Ed, 2015,54(25):7399-7404. doi: 10.1002/anie.v54.25

    46. [46]

      Lei F C, Sun Y F, Liu K T. Oxygen Vacancies Confined in Ultrathin Indium Oxide Porous Sheets for Promoted Visible-Light Water Splitting[J]. J Am Chem Soc, 2014,136(19):6826-6829. doi: 10.1021/ja501866r

    47. [47]

      Wang Q, Chen L, Guan S. Ultrathin and Vacancy-Rich CoAl-Layered Double Hydroxide/Graphite Oxide Catalysts:Promotional Effect of Cobalt Vacancies and Oxygen Vacancies in Alcohol Oxidation[J]. ACS Catal, 2018,8(4):3104-3115. doi: 10.1021/acscatal.7b03655

    48. [48]

      Wang Y Y, Xie C, Zhang Z Y. In Situ Exfoliated, N-Doped, and Edge-Rich Ultrathin Layered Double Hydroxides Nanosheets for Oxygen Evolution Reaction[J]. Adv Funct Mater, 2018,28(4)1703363. doi: 10.1002/adfm.201703363

    49. [49]

      Liu R, Wang Y Y, Liu D D. Water-Plasma-Enabled Exfoliation of Ultrathin Layered Double Hydroxide Nanosheets with Multivacancies for Water Oxidation[J]. Adv Mater, 2017,29(30)1701546. doi: 10.1002/adma.201701546

    50. [50]

      Xie Q, Cai Z, Li P. Layered Double Hydroxides with Atomic-Scale Defects for Superior Eectrocatalysis[J]. Nano Res, 2018.

    51. [51]

      Zhang Y, Cui B, Zhao C. Co-Ni Layered Double Hydroxides for Water Oxidation in Neutral Electrolyte[J]. Phys Chem Chem Phys, 2013,15(19):7363-7369. doi: 10.1039/c3cp50202c

    52. [52]

      Gao X Y, Long X, Yu H. Ni Nanoparticles Decorated NiFe Layered Double Hydroxide as Bifunctional Electrochemical Catalyst[J]. J Electrochem Soc, 2017,164(6):H307-H310. doi: 10.1149/2.0561706jes

    53. [53]

      Long X, Lin H, Zhou D. Enhancing Full Water-Splitting Performance of Transition Metal Bifunctional Electrocatalysts in Alkaline Solutions by Tailoring CeO2-Transition Metal Oxides-Ni Nanointerfaces[J]. ACS Energy Lett, 2018,3(2):290-296. doi: 10.1021/acsenergylett.7b01130

    54. [54]

      Li K D, Zhang J F, Wu R. Anchoring CoO Domains on CoSe2 Nanobelts as Bifunctional Electrocatalysts for Overall Water Splitting in Neutral Media[J]. Adv Sci, 2016,31500426. doi: 10.1002/advs.201500426

    55. [55]

      Zhao Y F, Chen S Q, Sun B. Graphene-Co3O4 Nanocomposite as Electrocatalyst with High Performance for Oxygen Evolution Reaction[J]. Sci Rep, 2015,57629. doi: 10.1038/srep07629

  • 加载中
    1. [1]

      Zhao Lu Hu Lv Qinzhuang Liu Zhongliao Wang . Modulating NH2 Lewis Basicity in CTF-NH2 through Donor-Acceptor Groups for Optimizing Photocatalytic Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(12): 2405005-. doi: 10.3866/PKU.WHXB202405005

    2. [2]

      Fangfang WANGJiaqi CHENWeiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350

    3. [3]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    4. [4]

      Tongtong Zhao Yan Wang Shiyue Qin Liang Xu Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003

    5. [5]

      Xue Dong Xiaofu Sun Shuaiqiang Jia Shitao Han Dawei Zhou Ting Yao Min Wang Minghui Fang Haihong Wu Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012

    6. [6]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    7. [7]

      Hao WANGKun TANGJiangyang SHAOKezhi WANGYuwu ZHONG . Electro-copolymerized film of ruthenium catalyst and redox mediator for electrocatalytic water oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2193-2202. doi: 10.11862/CJIC.20240176

    8. [8]

      Runhua Chen Qiong Wu Jingchen Luo Xiaolong Zu Shan Zhu Yongfu Sun . 缺陷态二维超薄材料用于光/电催化CO2还原的基础与展望. Acta Physico-Chimica Sinica, 2025, 41(3): 2308052-. doi: 10.3866/PKU.WHXB202308052

    9. [9]

      Xi Xu Chaokai Zhu Leiqing Cao Zhuozhao Wu Cao Guan . Experiential Education and 3D-Printed Alloys: Innovative Exploration and Student Development. University Chemistry, 2024, 39(2): 347-357. doi: 10.3866/PKU.DXHX202308039

    10. [10]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    11. [11]

      Baohua LÜYuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105

    12. [12]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    13. [13]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    14. [14]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    15. [15]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    16. [16]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    17. [17]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    18. [18]

      Zhifang SUZongjie GUANYu FANG . Process of electrocatalytic synthesis of small molecule substances by porous framework materials. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2373-2395. doi: 10.11862/CJIC.20240290

    19. [19]

      Mengfei He Chao Chen Yue Tang Si Meng Zunfa Wang Liyu Wang Jiabao Xing Xinyu Zhang Jiahui Huang Jiangbo Lu Hongmei Jing Xiangyu Liu Hua Xu . Epitaxial Growth of Nonlayered 2D MnTe Nanosheets with Thickness-Tunable Conduction for p-Type Field Effect Transistor and Superior Contact Electrode. Acta Physico-Chimica Sinica, 2025, 41(2): 100016-. doi: 10.3866/PKU.WHXB202310029

    20. [20]

      Asif Hassan Raza Shumail Farhan Zhixian Yu Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020

Metrics
  • PDF Downloads(12)
  • Abstract views(632)
  • HTML views(160)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return