Elaboration and Application of Transition Metals Based Layered Double Hydroxides for Electrochemical Water Oxidation
- Corresponding author: YANG Shihe, yangsh@pkusz.edu.cn
Citation:
LONG Xia, WANG Yaqiong, JU Min, WANG Zheng, YANG Shihe. Elaboration and Application of Transition Metals Based Layered Double Hydroxides for Electrochemical Water Oxidation[J]. Chinese Journal of Applied Chemistry,
;2018, 35(8): 881-889.
doi:
10.11944/j.issn.1000-0518.2018.08.180130
Dresselhaus M S, Thomas I L. Alternative Energy Technologies[J]. Nature, 2001,414(6861):332-337. doi: 10.1038/35104599
Crabtree G W, Dresselhaus M S, Buchanan M V. The Hydrogen Economy[J]. Phys Today, 2004,57(12):39-44. doi: 10.1063/1.1878333
Turner J A. Sustainable Hydrogen Production[J]. Science, 2004,305(5686):972-974. doi: 10.1126/science.1103197
Koper M T M. Thermodynamic Theory of Multi-Electron Transfer Reactions:Implications for Electrocatalysis[J]. J Electroanal Chem, 2011,660(2):254-260. doi: 10.1016/j.jelechem.2010.10.004
Long X, Wang Z L, Xiao S. Transition Metal Based Layered Double Hydroxides Tailored for Energy Conversion and Storage[J]. Mater Today, 2016,19(4):213-226. doi: 10.1016/j.mattod.2015.10.006
Ma W, Ma R Z, Wang C X. A Superlattice of Alternately Stacked Ni-Fe Hydroxide Nanosheets and Graphene for Efficient Splitting of Water[J]. ACS Nano, 2015,9(2):1977-1984. doi: 10.1021/nn5069836
Long X, Li J K, Xiao S. A Strongly Coupled Graphene and FeNi Double Hydroxide Hybrid as an Excellent Electrocatalyst for the Oxygen Evolution Reaction[J]. Angew Chem Int Ed, 2014,53(29):7584-7588. doi: 10.1002/anie.201402822
Lu Z, Xu W W, Zhu W. Three-Dimensional NiFe Layered Double Hydroxide Film for High-Efficiency Oxygen Evolution Reaction[J]. Chem Commun, 2014,50(49):6479-6482. doi: 10.1039/C4CC01625D
Gerken J B, Shaner S E, Masse R C. A Survey of Diverse Earth Abundant Oxygen Evolution Electrocatalysts Showing Enhanced Activity from Ni-Fe Oxides Containing a Third Metal[J]. Energy Environ Sci, 2014,7(7):2376-2382. doi: 10.1039/C4EE00436A
Kim J, Yin X, Tsao K C. Ca2Mn2O5 as Oxygen-Deficient Perovskite Electrocatalyst for Oxygen Evolution Reaction[J]. J Am Chem Soc, 2014,136(42):14646-14649. doi: 10.1021/ja506254g
Suntivich J, May K J, Gasteiger H A. A Perovskite Oxide Optimized for Oxygen Evolution Catalysis from Molecular Orbital Principles[J]. Science, 2011,334(6061):1383-1385. doi: 10.1126/science.1212858
Lee J G, Hwang J, Hwang H J. A New Family of Perovskite Catalysts for Oxygen-Evolution Reaction in Alkaline Media:BaNiO3 and BaNi0.83O2.5[J]. J Am Chem Soc, 2016,138(10):3541-3547. doi: 10.1021/jacs.6b00036
Trotochaud L, Young S L, Ranney J K. Nickel-Iron Oxyhydroxide Oxygen-Evolution Electrocatalysts:The Role of Intentional and Incidental Iron Incorporation[J]. J Am Chem Soc, 2014,136(18):6744-6753. doi: 10.1021/ja502379c
Ahn H S, Bard A J. Surface Interrogation Scanning Electrochemical Microscopy of Ni1-xFexOOH(0 < x < 0.27) Oxygen Evolving Catalyst:Kinetics of the "Fast" Iron Sites[J]. J Am Chem Soc, 2016,138(1):313-318. doi: 10.1021/jacs.5b10977
Zhang B, Zheng X L, Voznyy O. Homogeneously Dispersed Multimetal Oxygen-Evolving Catalysts[J]. Science, 2016,352(6283):333-337. doi: 10.1126/science.aaf1525
Feng J X, Ye S H, Xu H. Design and Synthesis of FeOOH/CeO2 Heterolayered Nanotube Electrocatalysts for the Oxygen Evolution Reaction[J]. Adv Mater, 2016,28(23):4698-4703. doi: 10.1002/adma.v28.23
Wang Y Y, Liu D D, Liu Z J. Porous Cobalt-Iron Nitride Nanowires as Excellent Bifunctional Electrocatalysts for Overall Water Splitting[J]. Chem Commun, 2016,52(85):12614-12617. doi: 10.1039/C6CC06608A
Yu X Y, Feng Y, Guan B Y. Carbon Coated Porous Nickel Phosphides Nanoplates for Highly Efficient Oxygen Rvolution Reaction[J]. Energy Environ Sci, 2016,9(4):1246-1250. doi: 10.1039/C6EE00100A
Li D, Baydoun H, Verani C N. Efficient Water Oxidation Using CoMnP Nanoparticles[J]. J Am Chem Soc, 2016,138(12):4006-4009. doi: 10.1021/jacs.6b01543
Wang Q, O'Hare D. Recent Advances in the Synthesis and Application of Layered Double Hydroxide(LDH) Nanosheets[J]. Chem Rev, 2012,112(7):4124-4155. doi: 10.1021/cr200434v
Patel R, Park J T, Patel M. Transition-Metal-Based Layered Double Hydroxides Tailored for Energy Conversion and Storage[J]. J Mater Chem A, 2018,6(1):12-29. doi: 10.1039/C7TA09370E
Fan G L, Li F, Evans D G. Catalytic Applications of Layered Double Hydroxides:Recent Advances and Perspectives[J]. Chem Soc Rev, 2014,43(20):7040-7066. doi: 10.1039/C4CS00160E
Li Z H, Shao M F, An H L. Fast Electrosynthesis of Fe-Containing Layered Double Hydroxide Arrays Toward Highly Efficient Electrocatalytic Oxidation Reactions[J]. Chem Sci, 2015,6(11):6624-6631. doi: 10.1039/C5SC02417J
Tang C, Wang H S, Wang H F. Spatially Confined Hybridization of Nanometer-Sized NiFe Hydroxides into Nitrogen-Doped Graphene Frameworks Leading to Superior Oxygen Evolution Reactivity[J]. Adv Mater, 2015,27(30):4516-4522. doi: 10.1002/adma.v27.30
Wang Y Y, Zhang Y Q, Liu Z J. Layered Double Hydroxide Nanosheets with Multiple Vacancies Obtained by Dry Exfoliation as Highly Efficient Oxygen Evolution Electrocatalysts[J]. Angew Chem Int Ed, 2017,56(21):5867-5871. doi: 10.1002/anie.201701477
Vialat P, Mousty C, Taviot-Gueho C. High-Performing Monometallic Cobalt Layered Double Hydroxide Supercapacitor with Defined Local Structure[J]. Adv Funct Mater, 2014,24(30):4831-4842. doi: 10.1002/adfm.v24.30
Nejati K, Akbari A R, Davari S. Zn-Fe-Layered Double Hydroxide Intercalated with Vanadate and Molybdate Anions for Electrocatalytic Water Oxidation[J]. New J Chem, 2018,42(4):2889-2895. doi: 10.1039/C7NJ04469K
Li Y, Zhang L, Xiang X. Engineering of ZnCo-Layered Double Hydroxide Nanowalls Toward High-Efficiency Electrochemical Water Oxidation[J]. J Mater Chem A, 2014,2(33):13250-13258. doi: 10.1039/C4TA01275E
Zou X, Goswami A, Asefa T. Efficient Noble Metal-Free (Electro)catalysis of Water and Alcohol Oxidations by Zinc-Cobalt Layered Double Hydroxide[J]. J Am Chem Soc, 2013,135(46):17242-17245. doi: 10.1021/ja407174u
Long X, Xiao S, Wang Z L. Co Intake Mediated Formation of Ultrathin Nanosheets of Transition Metal LDH-An Advanced Electrocatalyst for Oxygen Evolution Reaction[J]. Chem Commun, 2015,51(6):1120-1123. doi: 10.1039/C4CC08856E
Dinh K N, Zheng P L, Dai Z F. Ultrathin Porous NiFeV Ternary Layer Hydroxide Nanosheets as a Highly Efficient Bifunctional Electrocatalyst for Overall Water Splitting[J]. Small, 2018,14(8)1703257. doi: 10.1002/smll.201703257
Smith R D L, Prevot M S, Fagan R D. Photochemical Route for Accessing Amorphous Metal Oxide Materials for Water Oxidation Catalysis[J]. Science, 2013,340(6128):60-63. doi: 10.1126/science.1233638
Gerken J B, Shaner S E, Masse R C. A Survey of Diverse Earth Abundant Oxygen Evolution Electrocatalysts Showing Rnhanced Activity from Ni-Fe Oxides Containing a Third Metal[J]. Energy Environ Sci, 2014,7(7):2376-2382. doi: 10.1039/C4EE00436A
Long X, Ma Z J, Yu H. Porous FeNi Oxide Nanosheets as Advanced Electrochemical Catalysts for Sustained Water Oxidation[J]. J Mater Chem A, 2016,4(39):14939-14943. doi: 10.1039/C6TA05907D
Grimaud A, May K J, Carlton C E. Double Perovskites as a Family of Highly Active Catalysts for Oxygen Evolution in Alkaline Solution[J]. Nat Commun, 2013,43439.
Klaus S, Cai Y, Louie M W. Effects of Fe Electrolyte Impurities on Ni(OH)2/NiOOH Structure and Oxygen Evolution Activity[J]. J Phys Chem C, 2015,119(13):7243-7254. doi: 10.1021/acs.jpcc.5b00105
Corrigan D A. The Catalysis of the Oxygen Evolution Reaction by Iron Impurities in Thin-Film Nickel-Oxide Electrodes[J]. J Electrochem Soc, 1987,134(2):377-384. doi: 10.1149/1.2100463
Hunter B M, Hieringer W, Winkler J R. Effect of Interlayer Anions on[NiFe]-LDH Nanosheet Water Oxidation Activity[J]. Energy Environ Sci, 2016,91734. doi: 10.1039/C6EE00377J
Gong M, Li Y G, Wang H L. An Advanced Ni-Fe Layered Double Hydroxide Electrocatalyst for Water Oxidation[J]. J Am Chem Soc, 2013,135(23):8452-8455. doi: 10.1021/ja4027715
Liu Y W, Hua X M, Xiao C. Heterogeneous Spin States in Ultrathin Nanosheets Induce Subtle Lattice Distortion to Trigger Efficient Hydrogen Evolution[J]. J Am Chem Soc, 2016,138(15):5087-5092. doi: 10.1021/jacs.6b00858
Gunjakar J L, Kim T W, Kim H N. Mesoporous Layer-by-Layer Ordered Nanohybrids of Layered Double Hydroxide and Layered Metal Oxide:Highly Active Visible Light Photocatalysts with Improved Chemical Stability[J]. J Am Chem Soc, 2011,133(38):14998-15007. doi: 10.1021/ja203388r
Song F, Hu X L. Exfoliation of Layered Double Hydroxides for Enhanced Oxygen Evolution Catalysis[J]. Nat Commun, 2014,55477. doi: 10.1038/ncomms6477
Xu X, Song F, Hu X L. A Nickel Iron Diselenide-Derived Efficient Oxygen-Evolution Catalyst[J]. Nat Commun, 2016,712324. doi: 10.1038/ncomms12324
Tompsett D A, Parker S C, Islam M S. Rutile (beta-)MnO2 Surfaces and Vacancy Formation for High Electrochemical and Catalytic Performance[J]. J Am Chem Soc, 2014,136(4):1418-1426. doi: 10.1021/ja4092962
Bao J, Zhang X D, Fan B. Ultrathin Spinel-Structured Nanosheets Rich in Oxygen Deficiencies for Enhanced Electrocatalytic Water Oxidation[J]. Angew Chem Int Ed, 2015,54(25):7399-7404. doi: 10.1002/anie.v54.25
Lei F C, Sun Y F, Liu K T. Oxygen Vacancies Confined in Ultrathin Indium Oxide Porous Sheets for Promoted Visible-Light Water Splitting[J]. J Am Chem Soc, 2014,136(19):6826-6829. doi: 10.1021/ja501866r
Wang Q, Chen L, Guan S. Ultrathin and Vacancy-Rich CoAl-Layered Double Hydroxide/Graphite Oxide Catalysts:Promotional Effect of Cobalt Vacancies and Oxygen Vacancies in Alcohol Oxidation[J]. ACS Catal, 2018,8(4):3104-3115. doi: 10.1021/acscatal.7b03655
Wang Y Y, Xie C, Zhang Z Y. In Situ Exfoliated, N-Doped, and Edge-Rich Ultrathin Layered Double Hydroxides Nanosheets for Oxygen Evolution Reaction[J]. Adv Funct Mater, 2018,28(4)1703363. doi: 10.1002/adfm.201703363
Liu R, Wang Y Y, Liu D D. Water-Plasma-Enabled Exfoliation of Ultrathin Layered Double Hydroxide Nanosheets with Multivacancies for Water Oxidation[J]. Adv Mater, 2017,29(30)1701546. doi: 10.1002/adma.201701546
Xie Q, Cai Z, Li P. Layered Double Hydroxides with Atomic-Scale Defects for Superior Eectrocatalysis[J]. Nano Res, 2018.
Zhang Y, Cui B, Zhao C. Co-Ni Layered Double Hydroxides for Water Oxidation in Neutral Electrolyte[J]. Phys Chem Chem Phys, 2013,15(19):7363-7369. doi: 10.1039/c3cp50202c
Gao X Y, Long X, Yu H. Ni Nanoparticles Decorated NiFe Layered Double Hydroxide as Bifunctional Electrochemical Catalyst[J]. J Electrochem Soc, 2017,164(6):H307-H310. doi: 10.1149/2.0561706jes
Long X, Lin H, Zhou D. Enhancing Full Water-Splitting Performance of Transition Metal Bifunctional Electrocatalysts in Alkaline Solutions by Tailoring CeO2-Transition Metal Oxides-Ni Nanointerfaces[J]. ACS Energy Lett, 2018,3(2):290-296. doi: 10.1021/acsenergylett.7b01130
Li K D, Zhang J F, Wu R. Anchoring CoO Domains on CoSe2 Nanobelts as Bifunctional Electrocatalysts for Overall Water Splitting in Neutral Media[J]. Adv Sci, 2016,31500426. doi: 10.1002/advs.201500426
Zhao Y F, Chen S Q, Sun B. Graphene-Co3O4 Nanocomposite as Electrocatalyst with High Performance for Oxygen Evolution Reaction[J]. Sci Rep, 2015,57629. doi: 10.1038/srep07629
Zhao Lu , Hu Lv , Qinzhuang Liu , Zhongliao Wang . Modulating NH2 Lewis Basicity in CTF-NH2 through Donor-Acceptor Groups for Optimizing Photocatalytic Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(12): 2405005-. doi: 10.3866/PKU.WHXB202405005
Fangfang WANG , Jiaqi CHEN , Weiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350
Jinyi Sun , Lin Ma , Yanjie Xi , Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094
Tongtong Zhao , Yan Wang , Shiyue Qin , Liang Xu , Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003
Xue Dong , Xiaofu Sun , Shuaiqiang Jia , Shitao Han , Dawei Zhou , Ting Yao , Min Wang , Minghui Fang , Haihong Wu , Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012
Ran HUO , Zhaohui ZHANG , Xi SU , Long CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195
Hao WANG , Kun TANG , Jiangyang SHAO , Kezhi WANG , Yuwu ZHONG . Electro-copolymerized film of ruthenium catalyst and redox mediator for electrocatalytic water oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2193-2202. doi: 10.11862/CJIC.20240176
Runhua Chen , Qiong Wu , Jingchen Luo , Xiaolong Zu , Shan Zhu , Yongfu Sun . 缺陷态二维超薄材料用于光/电催化CO2还原的基础与展望. Acta Physico-Chimica Sinica, 2025, 41(3): 2308052-. doi: 10.3866/PKU.WHXB202308052
Xi Xu , Chaokai Zhu , Leiqing Cao , Zhuozhao Wu , Cao Guan . Experiential Education and 3D-Printed Alloys: Innovative Exploration and Student Development. University Chemistry, 2024, 39(2): 347-357. doi: 10.3866/PKU.DXHX202308039
Lina Guo , Ruizhe Li , Chuang Sun , Xiaoli Luo , Yiqiu Shi , Hong Yuan , Shuxin Ouyang , Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002
Baohua LÜ , Yuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105
Bo YANG , Gongxuan LÜ , Jiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346
Juntao Yan , Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024
Qiangqiang SUN , Pengcheng ZHAO , Ruoyu WU , Baoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454
Yanan Liu , Yufei He , Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081
Geyang Song , Dong Xue , Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030
Ping ZHANG , Chenchen ZHAO , Xiaoyun CUI , Bing XIE , Yihan LIU , Haiyu LIN , Jiale ZHANG , Yu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014
Zhifang SU , Zongjie GUAN , Yu FANG . Process of electrocatalytic synthesis of small molecule substances by porous framework materials. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2373-2395. doi: 10.11862/CJIC.20240290
Mengfei He , Chao Chen , Yue Tang , Si Meng , Zunfa Wang , Liyu Wang , Jiabao Xing , Xinyu Zhang , Jiahui Huang , Jiangbo Lu , Hongmei Jing , Xiangyu Liu , Hua Xu . Epitaxial Growth of Nonlayered 2D MnTe Nanosheets with Thickness-Tunable Conduction for p-Type Field Effect Transistor and Superior Contact Electrode. Acta Physico-Chimica Sinica, 2025, 41(2): 100016-. doi: 10.3866/PKU.WHXB202310029
Asif Hassan Raza , Shumail Farhan , Zhixian Yu , Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020
A.side view structure; B.top view structures of LDHs with M(Ⅱ)/M(Ⅲ)=2, 3, and 4