Citation: HAO Shuai, JIANG Dongmei, ZHANG Xiaoteng, CHEN Junchang, XIA Liangshu. Research Progress on Hydrazine Hydrate Reduction of Metal[J]. Chinese Journal of Applied Chemistry, ;2018, 35(7): 756-766. doi: 10.11944/j.issn.1000-0518.2018.07.170293 shu

Research Progress on Hydrazine Hydrate Reduction of Metal

  • Corresponding author: XIA Liangshu, xls1966@hotmail.com
  • Received Date: 21 August 2017
    Revised Date: 13 October 2017
    Accepted Date: 8 November 2017

    Fund Project: Supported by the National Natural Science Foundation of China(No.11575078)the National Natural Science Foundation of China 11575078

Figures(6)

  • Hydrazine hydrate reduction of metal is mainly applied in the preparation of metal nanoparticles, recovery of metal ions in spent liquid and nuclear fuel. This article reviews the research progress in recent years on the preparation of nano metal materials, the recovery and reuse of metal ions and the used nuclear fuel by hydrazine hydrate as reducing agent or complexing agent in liquid phase reduction process. In liquid phase reduction, the differences and the related mechanisms, characteristics and influencing factors between acidic and alkaline conditions are analyzed and summarized in the process of hydrazine hydrate reduction of metals. This article gives a reference for future research on this field.
  • 加载中
    1. [1]

      SONG Tianyou, XU Jiaming, CHENG Gongzhen. Inorganic Chemistry, Vol2[M]. Higher Education Press, 2015:95-96(in Chinese).

    2. [2]

      Huang G Y, Xu S M, Xu G. Preparation of Fine Nickel Powders via Reduction of Nickel Hydrazine Complex Precursors[J]. Trans Nonferr Met Soc, 2009,19(2):389-393. doi: 10.1016/S1003-6326(08)60283-6

    3. [3]

      Chae E H, Kim S H, Lee J H. Preparation of Fine Ni Powders from Nickel Hydrazine Complex[J]. Mater Chem Phys, 2006,97(2):371-378.  

    4. [4]

      Gustafsson M, Fischer A, Ilyukhin A. Novel Polynuclear Nickel(Ⅱ) Cmplex:Hydrazine, Sulfato, and Hydroxo Bridging in an Unusual Metal Hexamer. Crystal Structure and Magnetic Properties of[Ni6(N2H4)6(SO4)4(OH)2(H2O)8](SO4)(H2O)10[J]. Inorg Chem, 2010,49(12):5359-5361. doi: 10.1021/ic100648c

    5. [5]

      Li Z Y, Han C H, Shen J Y. Reduction of Ni2+, by Hydrazine in Solution for the Preparation of Nickel Nano-particles[J]. Mater Sci, 2006,41(11):3473-3480. doi: 10.1007/s10853-005-5874-z

    6. [6]

      Qi B H, Li D G, Ni X M. A Facile Chemical Reduction Route to the Preparation of Single-crystalline Iron Nanocubes[J]. Chem Lett, 2007,36(6):722-723. doi: 10.1246/cl.2007.722

    7. [7]

      ZHU Yanchao, ZHAO Jingzhe, ZHOU Bing. Preparation of Metallic Iron Nanoparticles with Liquid Phase Chemical Reduction Method[J]. Chem J Chinese Univ, 2008,29(10):2020-2024. doi: 10.3321/j.issn:0251-0790.2008.10.023

    8. [8]

      Liu X H, Yi R, Wang Y T. Highly Ordered Snowflakelike Metallic Cobalt Microcrystals[J]. Phys Chem C, 2007,111(1):163-167. doi: 10.1021/jp0643597

    9. [9]

      WEN Shulai, LIU Ying, ZHAO Xiuchen. The Effects of Process Factors on Morphology of Ultrafine Cobalt Particles Prepared by Liquid Phase Reduction Method[J]. Magn Mater Devices, 2014,45(6):15-19.  

    10. [10]

      Li Y D, Wang J W, Deng Z X. Bismuth Nanotubes:A Rational Low-Temperature Synthetic Route[J]. J Am Chem Soc, 2001,123(40):9904-9905. doi: 10.1021/ja016435j

    11. [11]

      Purkayastha A, Lupo F, Kim S. Low-Temperature, Template-Free Synthesis of Single-Crystal Bismuth Telluride Nanorods[J]. Adv Mater, 2006,18(4):496-500. doi: 10.1002/(ISSN)1521-4095

    12. [12]

      WANG Yilin, LIU Shengyan, MO Fengping. Aqueous Synthesis of CdTe Quantum Dots from Hydrazine Hydrate and Tellurium Dioxide[J]. Chem J Chinese Univ, 2013,34(1):45-49. doi: 10.7503/cjcu20120227

    13. [13]

      GOU Junjun, YE Jinwen, LIU Ying. The Preparation of Nanometer Tellurium Powder with Liquid Phase Reduction Method under the Condition of Different Solvents[J]. Funct Mater, 2014,45(1):125-128.  

    14. [14]

      Ducamp-Sanguesa C, Herrera-Urbina R, Figlarz M. Fine Palladium Powder of Uniform Particle Size and Shape Produced in Ethyleneglycol[J]. Solid State Ionics, 1993,63(9):25-30.  

    15. [15]

      Morris D F C, Ritter T J. Oxidation of Hydrazine by Halogeno-Complexes of Iridium(Ⅳ) in Acidic Perchlorate Solutions[J]. Chem Soc Dalton Trans, 1980,11(2).  

    16. [16]

      HU Biao, WANG Xianghui, TAN Xuemei. Preparation and Characterization of Cocoanut Activated Carbons with High Specific Surface Area and Pd/C Catalyst[J]. New Chem Mater, 2011,39(11):132-134. doi: 10.3969/j.issn.1006-3536.2011.11.043

    17. [17]

      HUAN Changyong, MA Lei, LÜ Deyi. Preparation and Formation Mechanism of New PdHx-Pd/C Catalyst Through Hydrazine-reducing Method under Atmospheric Pressure and H2-free Conditions[J]. Inorg Mater, 2013,28(10):1072-1078.  

    18. [18]

      Redjel A, Boudjahem A G, Bettahar M. Effect of Palladium Precursor and Preparation Method on the Catalytic Performance of Pd/SiO2 Catalysts for Benzene Hydrogenation[J]. Part Sci Technol, 2017. doi: 10.1080/02726351.2017.1295294

    19. [19]

      YU Mengjiao, WANG Yumian, HOU Xingang. Preparation of Copper Nanoparticles by Chemical Reduction with Hydrazine Under Ultrasonic Action[J]. Powder Metall Ind, 2007,17(6):22-26.  

    20. [20]

      Long Q P, Sohn J H, Ji H P. Comparative Study on the Preparation of Conductive Copper Pastes with Copper Nanoparticles Prepared by Electron Beam Irradiation and Chemical Reduction[J]. Radiat Phys Chem, 2011,80(5):638-642. doi: 10.1016/j.radphyschem.2011.01.004

    21. [21]

      Tan Y W, Li Y F, Zhu D B. Preparation of Silver Nanocrystals in the Presence of Aniline[J]. J Colloid Interface Sci, 2003,258(2):244-251. doi: 10.1016/S0021-9797(02)00151-0

    22. [22]

      Wang X Y, Yin S Y, Zhang K L. Preparation and Characteristic of Spherical Li3V2(PO4)3[J]. Alloys Compd, 2009,486(1/2):L5-L7.

    23. [23]

      LI Lei, YI Qingfen. Hydrothermal Synthesis and Electro-Activity of Titanium-Supported Silver Electrodes[J]. Chinese Rare Met, 2010,34(1):70-74.  

    24. [24]

      Lu F, Meng F M, Wang L N. Controlled Synthesis and Optical Properties of CeO2, Nanoparticles by a N2H4·H2O Assisted Hydrothermal Method[J]. IET Micro Nano Lett, 2012,7(7):624-627. doi: 10.1049/mnl.2012.0279

    25. [25]

      Meng F M, Bo Q H, Zhang C. Microstructure and Optical Characteristics of Rod-Like Nanoscale CeO2 Synthesized by Hydrothermal Method[J]. Nanosci Nanotechnol, 2013,13(10):6653-6659. doi: 10.1166/jnn.2013.7527

    26. [26]

      Usman M S, Ibrahim N A, Shameli K. Copper Nanoparticles Mediated by Chitosan:Synthesis and Characterization via Chemical Methods[J]. Molecules, 2012,17(12)14928. doi: 10.3390/molecules171214928

    27. [27]

      Boltoeva M Y, Trefilova A V, Anan'Ev A V. Catalytic Reduction of U(Ⅵ) with Hydrazine on Palladium Catalysts in Acid Solutions[J]. Radiochemistry, 2008,50(1):38-45. doi: 10.1134/S1066362208010050

    28. [28]

      Tyumentsev M S, Zubavichus Y V, Shiryaev A A. Catalytic Reduction of U(Ⅵ) in H2SO4, Solutions with Hydrazine and Formic Acid in the Presence of Bimetallic Platinum-Ruthenium Catalysts[J]. Radiochemistry, 2014,56(2):150-155. doi: 10.1134/S1066362214020040

    29. [29]

      Xia L S, Hu S S, He H. Research of Thermodynamic and Kinetics in Preparing U(Ⅳ) by Reducing and Catalyzing U(Ⅵ) with Hydrazine[J]. Radiochim Acta, 2015,103(6):423-432.

    30. [30]

      Wei Y Z, Fang B, Arai T. Electrochemical Reduction of Uranium(Ⅵ) in Nitric Acid-Hydrazine Solution on Glassy Carbon Electrode[J]. Radioanal Nucl Chem, 2004,262(2):409-415. doi: 10.1023/B:JRNC.0000046770.86000.d6

    31. [31]

      Mishra S, Sini K, Rao C J. Electrochemical Studies on the Reduction of Uranyl Ions in Nitric Acid-Hydrazine Media[J]. Electroanal Chem, 2016,776:127-133. doi: 10.1016/j.jelechem.2016.07.002

    32. [32]

      Kulyako Y M, Perevalov S A, Trofimov T I. Preparation of Uranium Oxides in Nitric Acid Solutions by the Reaction of Uranyl Nitrate with Hydrazine Hydrate[J]. Radiochemistry, 2013,55(6):567-573. doi: 10.1134/S1066362213060015

    33. [33]

      Kulyako Y M, Trofimov T I, Perevalov S A. Preparation of Uranium Oxides by Reductive Denitration of Uranyl Nitrate under Microwave Heating[J]. Radiochemistry, 2015,57(3):251-254. doi: 10.1134/S1066362215030042

    34. [34]

      YANG He, ZHANG Hu, LI Li. Separation Np from Pu Based on Reduction-Stripping by Using Hydrazine Nitrate as Reductant[J]. Nucl Tech, 2016,39(9):090301-1-090301-8.

    35. [35]

      CHENG Zhongping. Theoretical Study on the Mechanisms of Np(Ⅵ) Reduction with Hydrazine[D]. East China University Technol, 2016(in Chinese).

    36. [36]

      Anan'ev A V, Boltoeva M Y, Tyumentsev M S. Catalytic Reduction of Np(Ⅴ) with Hydrazine in Nitric Acid Solutions in the Presence of Ruthenium Catalysts[J]. Radiochemistry, 2013,55(1):52-58. doi: 10.1134/S1066362213010104

    37. [37]

      Tyumentsev M S, Anan'Ev A V, Shiryaev A A. Synergistic Effect in Heterogeneously Catalyzed Reduction of U(Ⅵ) and Np(Ⅴ) and Decomposition of Hydrazine and Oxalic Acid with Bimetallic Pt-Ru Catalysts[J]. Doklady Phys Chem, 2013,450(2):142-145. doi: 10.1134/S0012501613060055

    38. [38]

      WANG Xiaojun, HE Hua, WANG Xiaofang. Study on the Recovery of Resource from Spent Etching Solution[J]. Environ Eng, 2004,22(2):75-77.  

    39. [39]

      LUO Xiaohu, CHEN Shirong, YANG Qiong. Preparation of Highly Pure Copper Nanoparticles from Spent Alkaline PCB Etching Solution[J]. Electroplat Finish, 2013,32(4):38-42.  

    40. [40]

      LI Qian, HU Long, YANG Yongbin. Research on Recovery of Palladium from Spent Catalyst[J]. Hydrometall China, 2017,36(1):41-45.  

    41. [41]

      LI Qian, TIAN Yanwen, ZHENG Chenyu. Thermodynamic Analysis and Experimental Study of Arsenic Recovery from Bio-Oxidation Gold Extraction[J]. Environ Chem, 2011,30(4):851-855.  

    42. [42]

      Gould E S. Reductions of Carboxylate-Bound Chromium(Ⅴ)[J]. Acc Chem Res, 2002,19(3):66-72.  

    43. [43]

      Wang T G, Xu H B. Reduction of Cr(Ⅵ) by Hydrazine in Solution Saturated with KHCO3[J]. Hazard Mater, 2005,123(1/2/3):176-180.  

    44. [44]

      Gibson C P, Putzer K J. Synthesis and Characterization of Anisometric Cobalt Nanoclusters[J]. Science, 1995,267(5202):1338-1340. doi: 10.1126/science.267.5202.1338

    45. [45]

      Yuan M, Mitzi D B. Solvent Properties of Hydrazine in the Preparation of Metal Chalcogenide Bulk Materials and Films[J]. Dalton Trans, 2009,31(31):6078-6088.

    46. [46]

      Yasodhai S, Sivakumar T, Govindarajan S. Preparation, Characterisation and Thermal Reactivity of Transition Metal Complexes of Hydrazine with Citric Acid[J]. Thermochim Acta, 1999,338(1/2):57-65.

    47. [47]

      Mezyk S P, Tateishi M, Macfarlane R. pKa of the Hydrazinium Ion and the Reaction of Hydrogen Atoms with Hydrazine in Aqueous Solution[J]. J Chem Soc Faraday Trans, 1996,92(14):2541-2545. doi: 10.1039/ft9969202541

    48. [48]

      ZHANG Jun, XIE Li, XIA Wensheng. Theoretical Study of Hydrazine Decomposition Mechanism on Metal Surfaces[J]. Chem J Chinese Univ, 2008,29(10):2035-2039. doi: 10.3321/j.issn:0251-0790.2008.10.026

    49. [49]

      Neta P, Maruthamuthu P, Carton P M. Formation and Reactivity of the Amino Radical[J]. Phys Chem, 1978,82(17):3733-3741.  

    50. [50]

      Achibana A, Fuju M. A Simple Algorithm for Conservation of Invariants of Motion in Reaction Dynamics Calculations:Application to the NH3++NH3 System[J]. Chem Phys, 1999,110(5):2323-2331.

    51. [51]

      Kobayashi Y, Tajima N, Hirao K. A Theoretical Study on the Reaction Mechanism of the Gas-Phase Decomposition of NO by NH3+ and NH4+[J]. J Phys Chem A, 2000,104(29):6855-6860. doi: 10.1021/jp9944637

    52. [52]

      lvarez-Barcia S, Russ M S, Meisner J. Atom Tunnelling in the Reaction NH3++ H2→NH4++H and Its Astrochemical Relevance[J]. Faraday Discuss, 2016,195:69-80. doi: 10.1039/C6FD00096G

    53. [53]

      Coutinho-Neto M, Deumens E, Öhrn Y. Abstraction and Exchange Mechanisms for the D2+NH3+ Reaction at Hypothermal Collision Energies[J]. Chem Phys, 2002,116(7):2794-2802.

  • 加载中
    1. [1]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    2. [2]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    3. [3]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    4. [4]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    5. [5]

      Jun LIHuipeng LIHua ZHAOQinlong LIU . Preparation and photocatalytic performance of AgNi bimetallic modified polyhedral bismuth vanadate. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 601-612. doi: 10.11862/CJIC.20230401

    6. [6]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    7. [7]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    8. [8]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    9. [9]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    10. [10]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    11. [11]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    12. [12]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    13. [13]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    14. [14]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    15. [15]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    16. [16]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    17. [17]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    18. [18]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    19. [19]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    20. [20]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

Metrics
  • PDF Downloads(347)
  • Abstract views(12987)
  • HTML views(5786)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return