Citation: DANG Lifang, WANG Ruixin, XIE Meina, JIAO Weizhou. Research Progress of Polyoxometalates and Their Self-aggregation Behaviors in Solution[J]. Chinese Journal of Applied Chemistry, ;2018, 35(6): 625-644. doi: 10.11944/j.issn.1000-0518.2018.06.170292 shu

Research Progress of Polyoxometalates and Their Self-aggregation Behaviors in Solution

  • Corresponding author: WANG Ruixin, wrx0212@126.com
  • Received Date: 21 August 2017
    Revised Date: 19 October 2017
    Accepted Date: 7 November 2017

    Fund Project: Program for Out-standing Innovative Teams of Higher Learning Institutions of Shanxi 201510Supported by Program for Out-standing Innovative Teams of Higher Learning Institutions of Shanxi(No.201510), the Shanxi Province Key Laboratory of Higee-Oriented Chemical Engineering(No.CZL201506)the Shanxi Province Key Laboratory of Higee-Oriented Chemical Engineering CZL201506

Figures(27)

  • Polyoxometalate(POM) is an anion cluster composed of transition metal and oxygen atoms. Due to its special molecular structure and excellent physical and chemical properties, POM has a wide range of applications in catalysis, surface and supramolecular chemistry, as well as biological, pharmaceutical, and material sciences. POM in dilute aqueous solution can occur self-aggregation, forming a "ordered aggregates structure" similar to the structure of amphiphilic molecule in solution, which gives new structure and property for the development of new nano-devices and in the field of catalysis, medicines and other applications. This review briefly introduced the structure, properties and applications of POM, and summarized the research status and new progress of self-aggregation of POM in solution.
  • 加载中
    1. [1]

      Moll H E, Dolbecq A, Mbomekalle I M. Tuning the Photochromic Properties of Molybdenum Bisphosphonate Polyoxometalates[J]. Inorg Chem, 2012,51(4):2291-2302. doi: 10.1021/ic202299d

    2. [2]

      WANG Miao. Synthesis and Properties of Polyoxometalate-Based Photochromic Materials[D]. Beijing: Beijing University of Chemical Technology, 2012(in Chinese). 

    3. [3]

      CHEN Wei. Hierarchical Assembly and Performance Research of Polyoxometalates FuncyIional Matericals Induced by Covalent Modification[D]. Beijing: Beijing University of Chemical Technology, 2014(in Chinese). 

    4. [4]

      XU Lin, WANG Enbo. Assembly Syntheses of New Functional Molecule-Based Materials Using Polyoxometalates as Building Blocks[J]. Chinese J Inorg Chem, 2000,16(2):218-228.  

    5. [5]

      Fatemeh F, Bamoharram , Ali Ahmadpour, Majid M Heravi. Recent Advances in Application of Polyoxometalates for the Synthesis of Nanoparticles[J]. Synth React Inorg Met-Org Nano-Met Chem, 2012,42(2):209-230. doi: 10.1080/15533174.2011.609849

    6. [6]

      KONG Yumei, PENG Jun, XUE Bo. Preparation and Antibacterial Activity of Amino Acid Polyoxometalate Self-Assembled Multilayer Films[J]. Chem J Chinese Univ, 2006,27(5):801-804.  

    7. [7]

      Yin P, Li D, Liu T B. Solution Behaviors and Self-assembly of Polyoxometalates as Models of Macroions and Amphiphilic Polyoxometalate-Organic Hybrids as Novel Surfactants[J]. Chem Soc Rev, 2012,41(22):7368-7383. doi: 10.1039/c2cs35176e

    8. [8]

      Müller A, Beckmann E, B gge H. Inorganic Chemistry Goes Protein Size:A Mo368 Nano-Hedgehog Initiating Nanochemistry by Symmetry Breaking[J]. Angew Chem Int Ed, 2002,41(7):1162-1167. doi: 10.1002/(ISSN)1521-3773

    9. [9]

      Cronin L, Beugholt C, Krickemeyer E. "Molecular Symmetry Breakers" Generating Metal-Oxide-Based Nanoobject Fragments as Synthons for Complex Structures:[[Mo(128)Eu(4)O(388)H(10)(H(2)O)(81)](2)](20-), A Giant-Cluster Dimer[J]. Angew Chem, 2002,41(15):2805-2808. doi: 10.1002/1521-3773(20020802)41:15<2805::AID-ANIE2805>3.0.CO;2-E

    10. [10]

      Krebs B, Paulat-B schen I. The Structure of the Potassium Isopolymolybdate K8[Mo36O12(H2O)16nH2O(n=36.40)[J]. Acta Cryst, 2001,38(38):1710-1718.  

    11. [11]

      Tytko K H, Sch nfeld D C B, Buss B. A Macroisopolyanion of Molybdenum:Mo360[J]. Angew Chem Int Ed, 1973,12(4):330-332. doi: 10.1002/anie.197303301

    12. [12]

      Müller A, Shah S Q N, Bögge H. Molecular Growth From a Mo176 to a Mo248 Cluster[J]. Nature, 1999,397(6714):48-50. doi: 10.1038/16215

    13. [13]

      Stracke J J, Finke R G. Water Oxidation Catalysis Beginning with Co4(H2O)2(PW9O34)210- When Driven by the Chemical Oxidant Ruthenium(Ⅲ)tris(2, 2'-bipyridine):Stoichiometry, Kinetic, and Mechanistic Studies en Route to Identifying the True Catalyst[J]. ACS Catal, 2013,4(1):79-89.  

    14. [14]

      Yu L, Ding Y, Zheng M. Polyoxometalate-Based Manganese Clusters as Catalysts for Efficient Photocatalytic and Electrochemical Water Oxidation[J]. Appl Catal B, 2017(209):45-52.  

    15. [15]

      Hill C L, Gueletii I V, Song J, et al. Photocatalytic Polyoxometalate Compositions of Tungstovanadates and Uses as Water Oxidation Catalysts: US, 14/387745[P]. 2017.

    16. [16]

      Wang J M, Yan L, Li G X. Mono-Substituted Keggin-Polyoxometalate Complexes as Effective and Recyclable Catalyst for the Oxidation of Alcohols with Hydrogen Peroxide in Biphasic System[J]. Tetrahedron Lett, 2005,46(41):7023-7027. doi: 10.1016/j.tetlet.2005.08.040

    17. [17]

      Zhang H, Zhang X, Ding Y. Hydroxylation of Phenol Catalyzed by Copper Keggin-Type Heteropoly Compounds with Hydrogen Peroxide[J]. New J Chem, 2002,26(4):376-377. doi: 10.1039/b110574D

    18. [18]

      Jing L, Shi J, Zhang F M. Polyoxometalate-Based Amphiphilic Catalysts for Selective Oxidation of Benzyl Alcohol with Hydrogen Peroxide under Organic Solvent-Free Conditions[J]. Ind Eng Chem Res, 2013,52(30):10095-10104. doi: 10.1021/ie4007112

    19. [19]

      Sun Z X, Fang S N, Li F Y. Enhanced Photovoltaic Performance of Copper Phthalocyanine by Incorporation of Polyoxometalate[J]. J Photochem Photobiol A, 2013,252(48):25-30.  

    20. [20]

      Wang T Q, Sun Z X, Li F Y. Nanostructured Polyoxometalate-Modified SnO2, Photoanode with Improved Photoelectrochemical Performance[J]. Electrochem Commun, 2014,47(10):45-48.  

    21. [21]

      Carriazo D, Addamo M, Marcì G. Tungstophosphoric Acid Supported on Polycrystalline TiO2, for the Photodegradation of 4-Nitrophenol in Aqueous Solution and Propan-2-ol in Vapour Phase[J]. Appl Catal A, 2009,356(2):172-179. doi: 10.1016/j.apcata.2009.01.010

    22. [22]

      Yanagida S, Nakajima A, Sasaki T. Preparation and Photocatalytic Activity of Keggin-Ion Tungstate and TiO2, Hybrid Layer-by-Layer Film Composites[J]. Appl Catal A, 2009,366(1):148-153. doi: 10.1016/j.apcata.2009.06.046

    23. [23]

      WEI Jun, LI Zhikui. Synthesis and Photocatalysis Properties of POM/TiO2 Composite Catalyst[J]. J Macromol Sci, 2012,28(1):84-88.  

    24. [24]

      Yin Q, Tan J M, Besson C. A Fast Soluble Carbon-Free Molecular Water Oxidation Catalyst Based on Abundant Metals[J]. Science, 2010,328(5976):342-345. doi: 10.1126/science.1185372

    25. [25]

      Song F, Ding Y, Ma B. K7[CoCo(H2O)W11O39]:A Molecular Mixed-Valence Keggin Polyoxometalate Catalyst of High Stability and Efficiency for Visible Light-Driven Water Oxidation[J]. Energy Environ Sci, 2013,6(4):1170-1184. doi: 10.1039/c3ee24433d

    26. [26]

      SONG Fangyuan, DING Yong, ZHAO Chongchao. Progress in Polyoxometalates-Catalyzed Water Oxidation[J]. Acta Chim Sin, 2014,72(2):133-144.  

    27. [27]

      Ogata A, Yanagie H, Ishikawa E. Antitumour Effect of Polyoxomolybdates:Induction of Apoptotic Cell Death and Autophagy in Vitro and in Vivo Models[J]. Br J Cancer, 2007,98(2):399-409.  

    28. [28]

      Yanagie H, Ogata A, Mitsui S. Anticancer Activity of Polyoxomolybdate[J]. Biomed Pharmacother, 2006,60(7)349. doi: 10.1016/j.biopha.2006.06.018

    29. [29]

      Prudent R, Moucadel V, Laudet B. Identification of Polyoxometalates as Nanomolar Noncompetitive Inhibitors of Protein Kinase CK2[J]. Chem Biol, 2008,15(7):683-692. doi: 10.1016/j.chembiol.2008.05.018

    30. [30]

      Matteis L D, Mitchell S G, Fuente J M D L. Supramolecular Antimicrobial Capsules Assembled from Polyoxometalates and Chitosan[J]. J Mater Chem B, 2014,2(41):7114-7117. doi: 10.1039/C4TB01460J

    31. [31]

      Nomiya K, Torii H, Hasegawa T. Insulin Mimetic Effect of a Ttungstate Cluster. Effect of Oral Administration of Homo-Polyoxotungstates and Vanadium-Substituted Polyoxotung-States on Blood Glucose Level of STZ Mice[J]. J Inorg Biochem, 2001,86(4):657-667. doi: 10.1016/S0162-0134(01)00233-1

    32. [32]

      Boden G, Chen X, Ruiz J. Turco:Effects of Vanadyl Sulfate on Carbohydrate and Lipid Metabolism in Patients with Non-Insulin-Dependent Diabetes Mellitus[J]. Metabolism, 1996,45(9):1130-1135. doi: 10.1016/S0026-0495(96)90013-X

    33. [33]

      Liu S, Kurth D G, Volkmer D. Polyoxometalates as pH-Sensitive Probes in Self-Assembled Multilayers[J]. Chem Commun, 2002,9(9)976.  

    34. [34]

      Long D L, Burkholder E, Cronin L. Polyoxometalate Clusters, Nanostructures and Materials:From Self Assembly to Designer Materials and Devices[J]. Chem Soc Rev, 2007,38(15):105-121.  

    35. [35]

      Zhang T, Liu S, Kurth D G. Organized Nanostructured Complexes of Polyoxometalates and Surfactants that Exhibit Photoluminescence and Electrochromism[J]. Adv Funct Mater, 2010,19(4):642-652.  

    36. [36]

      Poulos A S, Constantin D, Davidson P. Photochromic Hybrid Organic-Inorganic Liquid-Crystalline Materials Built from Nonionic Surfactants and Polyoxometalates:Elaboration and Structural Study[J]. Langmuir, 2008,24(12):6285-6291. doi: 10.1021/la8004322

    37. [37]

      Dolbecq A, Dumas E, Mayer C R. Hybrid Organic-Inorganic Polyoxometalate Compounds:From Structural Diversity to Applications[J]. Chem Rev, 2010,41(52):6009-6048.

    38. [38]

      Lehn J M. Supramolecular Chemistry:From Molecular Information Toward Self-Organization and Complex Matter[J]. Rep Prog Phys, 2004,67(3):249-265(17). doi: 10.1088/0034-4885/67/3/R02

    39. [39]

      JIA Xiangfeng, FAN Dawei, TANG Peiqin. "Second Organized Structures" of Nanoscale Inorganic Polyoxomolybdate Compounds[J]. Acta Phys-Chim Sin, 2006,22(10):1300-1304.  

    40. [40]

      Scheele C W, Hermstädt S F. Carl Wilhelm Scheele. Sämmtliche Physische und Chemische Werke[M]. Mayer and Müller, 1793.

    41. [41]

      Berzelius J J. Beitrag zur näheren Kenntniss des Molybdäns[J]. Ann Phys-Berlin, 1826,82(4):369-392. doi: 10.1002/(ISSN)1521-3889

    42. [42]

      Zhang J, Song Y F, Cronin L. Reverse-Vesicle Formation of Organic-Inorganic Polyoxometalate-Containing Hybrid Surfactants with Tunable Sizes[J]. Chemistry, 2010,16(37):11320-11324. doi: 10.1002/chem.v16:37

    43. [43]

      Zhang J, Song Y F, Cronin L. Self-Assembly of Organic-Inorganic Hybrid Amphiphilic Surfactants with Large Polyoxometalates as Polar Head Groups[J]. J Am Chem Soc, 2008,130(130):14408-14409.  

    44. [44]

      Pradeep C P, Misdrahi M F, Li F Y. Synthesis of Modular-Inorganic-Organic-Onorganic Polyoxometalates and Their Assembly into Vesicles[J]. Angew Chem Int Ed, 2009,48:8309-8313. doi: 10.1002/anie.200903070

    45. [45]

      Liu T B. Hydrophilic Macroionic Solutions:What Happens When Soluble Ions Reach the Size of Nanometer Scale?[J]. Langmuir, 2009,26(12):9202-9213.  

    46. [46]

      Liu T B, Diemann E, Li H. Self-Assembly in Aqueous Solution of Wheel-Shaped Mo154 Oxide Clusters into Vesicles[J]. Nature, 2003,426(6962):59-62. doi: 10.1038/nature02036

    47. [47]

      Müller A, Das S K, Fedin V P. Rapid and Simple Isolation of the Crystalline Molybdenum-Blue Compounds with Discrete and Linked Nanosized Ring-Shaped Anions:Na15[Mo126Mo28O462H14(H2O)70]0.5[Mo124Mo28O457H14(H2O)68]0.5·ca.400H2O and Na22[Mo118Mo28O442H14(H2O)58]·ca.250H2O[J]. Z Anorg Allg Chem, 1999,625(7):1187-1192. doi: 10.1002/(ISSN)1521-3749

    48. [48]

      Sogami I, Ise N. On the Electrostatic Interaction in Macroionic Solutions[J]. J Chem Phys, 1984,81(12):6320-6332. doi: 10.1063/1.447541

    49. [49]

      Kepler G M, Fraden S. Attractive Potential Between Confined Colloids at Low Ionic Strength[J]. Phys Rev Lett, 1994,73(2)356. doi: 10.1103/PhysRevLett.73.356

    50. [50]

      Crocker J C, Grier D G. When Like Charges Attract:The Effects of Geometrical Confinement on Long-Range Colloidal Interactions[J]. Phys Rev Lett, 1996,77(9):1897-1900. doi: 10.1103/PhysRevLett.77.1897

    51. [51]

      Ito K, Nakamura H, Yoshida H. On the Dynamic Character of "Ordered" Structure in Polymer Latex Suspensions[J]. J Am Chem Soc, 2002,110(21):6955-6963.  

    52. [52]

      Chen B L, Jiang H J, Zhu Y. Monitoring the Growth of Polyoxomolybdate Nanoparticles in Suspension by Flow Field-Flow Fractionation[J]. J Am Chem Soc, 2005,127(12):4166-4167. doi: 10.1021/ja045067r

    53. [53]

      Zhu Y, Cammersgoodwin A, Zhao B. Kinetic Precipitation of Solution-Phase Polyoxomolybdate Followed by Transmission Electron microscopy:A Window to Solution-Phase Nanostructure[J]. Chemistry, 2004,10(10):2421-2427. doi: 10.1002/(ISSN)1521-3765

    54. [54]

      M L K, Anish Bhatt, Liu G. A Complete Macroion-"Blackberry" Assembly-Macroion Transition with Continuously Adjustable Assembly Sizes in {Mo132} Water/Acetone Systems[J]. J Am Chem Soc, 2007,129(20):6453-6460. doi: 10.1021/ja0685809

    55. [55]

      Liu T B. An Unusually Slow Self-Asembly of Inorganic Ions in Dilute Aqueous Solution[J]. J Am Chem Soc, 2003,125(2):312-313. doi: 10.1021/ja028933d

    56. [56]

      Liu G, Liu T B. Strong Attraction Among the Fully Hydrophilic {Mo72Fe30} Macroanions[J]. J Am Chem Soc, 2005,127(19):6942-6943. doi: 10.1021/ja0510966

    57. [57]

      Liu G, Liu T B. Thermodynamic Properties of the Unique Self-Assembly of {Mo72Fe30} Inorganic Macro-Ions in Salt-Free and Salt-Containing Aqueous Solutions[J]. Langmuir, 2005,21(7):2713-2720. doi: 10.1021/la047897o

    58. [58]

      Pigga J M, Kistler M L, Shew C Y. Counterion Distribution Aaround Hydrophilic Mmolecular Macroanions:The Source of the Attractive Force in Self-Assembly[J]. Angew Chem Int Ed, 2009,48(35):6538-6542. doi: 10.1002/anie.v48:35

    59. [59]

      Kistler M L, Liu T B, Gouzerh P. Molybdenum-Oxide Based Unique Polyprotic Nanoacids Showing Different Deprotonations and Related Assembly Processes in Solution[J]. Dalton T, 2009,26(26):5094-5100.  

    60. [60]

      Liu G, Liu T B, Mal S S. Wheel-Shaped Polyoxotungstate[Cu20Cl(OH)24(H2O)12(P8W48O184)]25- Macroanions Form Supramolecular "Blackberry" Structure in Aqueous Solution[J]. J Am Chem Soc, 2006,128(31):10103-10110. doi: 10.1021/ja0610840

    61. [61]

      Mishra P P, Jing J, Francesconi L C. Self-Assembly of Yttrium-Containing Lacunary Polyoxotungstate Macroanions in Solution with Controllable Supramolecular Structure Size by pH or Solvent Content[J]. Langmuir, 2008,24(17):9308-9313. doi: 10.1021/la801366r

    62. [62]

      Li H L, Qi W, Li W. A Highly Transparent and Luminescent Hybrid Based on the Copolymerization of Surfactant-Encapsulated Polyoxometalate and Methyl Methacrylate[J]. Adv Mater, 2010,17(22):2688-2692.  

    63. [63]

      Sun H, Li H L, Bu W F. Self-Organized Microporous Structures Based on Surfactant-Encapsulated Polyoxometalate Complexes[J]. J Phys Chem B, 2006,110(49):24847-24854. doi: 10.1021/jp064535b

    64. [64]

      Zhang J, Song Y F, Cronin L. Self-Assembly of Organic-Inorganic Hybrid Amphiphilic Surfactants with Large Polyoxometalates as Polar Head Groups[J]. J Am Chem Soc, 2008,130(44):14408-14409. doi: 10.1021/ja805644a

    65. [65]

      Yan Y, Li B, Li W. Controllable Vesicular Structure and Reversal of a Surfactant-Encapsulated Polyoxometalate Complex[J]. Soft Matter, 2009,5(20):4047-4053. doi: 10.1039/b912011d

    66. [66]

      Li H L, Yang Y, Wang Y Z. Self-Assembly and Ion-Trapping Properties of Inorganic Nanocapsule-Surfactant Hybrid Spheres[J]. Soft Matter, 2011,7(6):2668-2673. doi: 10.1039/c0sm01044h

    67. [67]

      Li D, Song J, Yin P C. Inorganic-Organic Hybrid Vesicles with Counterion-and pH-Controlled Fluorescent Properties[J]. J Am Chem Soc, 2011,133(35):14010-14016. doi: 10.1021/ja204034g

    68. [68]

      Kistler M L, Patel K G, Liu T B. Accurately Tuning the Charge on Giant Polyoxometalate Type Keplerates Through Stoichiometric Interaction with Cationic Surfactants[J]. Langmuir, 2009,25(13):7328-7334. doi: 10.1021/la900394z

    69. [69]

      Liu T B. Surfactant-Induced Trans-Interface Transportation and Complex Formation of Giant Polyoxomolybdate-Based Clusters[J]. J Clust Sci, 2003,14(3):215-226. doi: 10.1023/B:JOCL.0000005059.45273.f8

    70. [70]

      Akutagawa T, Jin R, Tunashima R. Nanoscale Assemblies of Gigantic Molecular {Mo154-rings}:(dimethyldioctadecylammonium)20[Mo154O462H8(H2O)70][J]. Langmuir, 2008,24(1):231-238. doi: 10.1021/la701364k

    71. [71]

      Parratt L G. Surface Studies of Solids by Total Reflection of X-Rays[J]. Phys Rev, 1954,95(2):359-369. doi: 10.1103/PhysRev.95.359

    72. [72]

      Pradeep C P, Misdrahi M F, Li F Y. Synthesis of Modular "Inorganic-Organic-Inorganic" Polyoxometalates and Their Assembly into Vesicles[J]. Angew Chem Int Ed, 2009,48(44):8309-8313. doi: 10.1002/anie.200903070

    73. [73]

      Zhu Y, Yin P C, Xiao F P. Bottom-Up Construction of POM-Based Macrostructures:Coordination Assembled Paddle-Wheel Macroclusters and their Vesicle-Like Supramolecular Aggregation in Solution[J]. J Am Chem Soc, 2013,135(45):17155-17160. doi: 10.1021/ja408228b

    74. [74]

      Noguchi T, Chikara C, Kuroiwa K. Controlled Morphology and Photoreduction Characteristics of Polyoxometalate(POM)/Lipid Complexes and the Effect of Hydrogen Bonding at Mmolecular Interfaces[J]. Chem Commun, 2011,47(22)6455. doi: 10.1039/c1cc10231a

    75. [75]

      Nisar A, Zhuang J, Wang X. Cluster-Based Self-Assembly:Reversible Formation of Polyoxometalate Nanocones and Nanotubes[J]. Chem Mater, 2009,21(16)4746.  

    76. [76]

      Nisar A, Lu Y, Wang X. Assembling Polyoxometalate Clusters into Advanced Nanoarchitectures[J]. Chem Mater, 2010,22(11):3511-3518. doi: 10.1021/cm100691a

    77. [77]

      Bu W F, Li H L, Sun H. Polyoxometalate-Based Vesicle and Its Honeycomb Architectures on Solid Surfaces[J]. J Am Chem Soc, 2005,127(22):8016-8017. doi: 10.1021/ja042980j

    78. [78]

      Zhang T, Brown J, Oakley R J. Towards Functional Nanostructures:Ionic Self-Assembly of Polyoxometalates and Surfactants[J]. Curr Opin Colloid Interface Sci, 2009,14(2):62-70. doi: 10.1016/j.cocis.2007.10.003

    79. [79]

      Jia X F, Fan D W, Tang P Q. Hybrid Inorganic/Organic Quasi-Single Crystals of Wheel-Shaped {Mo154} Macro-Anions and Cationic-Surfactants[J]. J Clust Sci, 2006,17(3):467-478. doi: 10.1007/s10876-006-0071-z

    80. [80]

      Haso F, Wang R, Yin P. Supramolecular Assemblies of Polyoxometalate-Tethered Diblock Copolymers with Tunable Sizes in N-Methyl-2-pyrrolidone/Toluene Mixed Solvents[J]. Eur J Inorg Chem, 2015,2014(27):4589-4592.  

    81. [81]

      Haso F, Wang R, He J. Solution Behaviour of a Polymer with Polyoxometalate Inorganic Molecular Clusters on Its Main Chain[J]. New J Chem, 2016,40(2):910-913. doi: 10.1039/C5NJ01326G

    82. [82]

      Zhang B, Pradeep C P, Cronin L. Self-Assembly of Triangular Polyoxometalate-Organic Hybrid Macroions in Mixed Solvents[J]. Chem Commun, 2015,51(41):8630-8633. doi: 10.1039/C5CC02003D

    83. [83]

      Tan C X. Self-Assembly, Aggregates Morphology and Ionic Liquid Crystal of Polyoxometalate-Based Hybrid Molecule:From Vesicles to Layered Structure[J]. J Mol Struct, 2017:34-39.  

  • 加载中
    1. [1]

      Xinyu Miao Hao Yang Jie He Jing Wang Zhiliang Jin . Adjusting the electronic structure of Keggin-type polyoxometalates to construct S-scheme heterojunction for photocatalytic hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(6): 100051-. doi: 10.1016/j.actphy.2025.100051

    2. [2]

      Shuyu Liu Xiaomin Sun Bohan Song Gaofeng Zeng Bingbing Du Chongshen Guo Cong Wang Lei Wang . Design and Fabrication of Phospholipid-Vesicle-based Artificial Cells towards Biomedical Applications. University Chemistry, 2024, 39(11): 182-188. doi: 10.12461/PKU.DXHX202404113

    3. [3]

      Zhengzheng LIUPengyun ZHANGChengri WANGShengli HUANGGuoyu YANG . Synthesis, structure, and electrochemical properties of a sandwich-type {Co6}-cluster-added germanotungstate. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1173-1179. doi: 10.11862/CJIC.20240039

    4. [4]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    5. [5]

      Wenjie SHIFan LUMengwei CHENJin WANGYingfeng HAN . Synthesis and host-guest properties of imidazolium-functionalized zirconium metal-organic cage. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 105-113. doi: 10.11862/CJIC.20240360

    6. [6]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    7. [7]

      Shiyang He Dandan Chu Zhixin Pang Yuhang Du Jiayi Wang Yuhong Chen Yumeng Su Jianhua Qin Xiangrong Pan Zhan Zhou Jingguo Li Lufang Ma Chaoliang Tan . 铂单原子功能化的二维Al-TCPP金属-有机框架纳米片用于增强光动力抗菌治疗. Acta Physico-Chimica Sinica, 2025, 41(5): 100046-. doi: 10.1016/j.actphy.2025.100046

    8. [8]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    9. [9]

      Aiai WANGLu ZHAOYunfeng BAIFeng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225

    10. [10]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    11. [11]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    12. [12]

      Bin HEHao ZHANGLin XUYanghe LIUFeifan LANGJiandong PANG . Recent progress in multicomponent zirconium?based metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2041-2062. doi: 10.11862/CJIC.20240161

    13. [13]

      Xiaofang DONGYue YANGShen WANGXiaofang HAOYuxia WANGPeng CHENG . Research progress of conductive metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 14-34. doi: 10.11862/CJIC.20240388

    14. [14]

      Yan Qi Yueqin Yu Weisi Guo Yongjun Liu . 过渡金属参与的有机反应案例教学与实践探索. University Chemistry, 2025, 40(6): 111-117. doi: 10.12461/PKU.DXHX202411021

    15. [15]

      Xinxin YUYongxing LIUXiaohong YIMiao CHANGFei WANGPeng WANGChongchen WANG . Photocatalytic peroxydisulfate activation for degrading organic pollutants over the zero-valent iron recovered from subway tunnels. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 864-876. doi: 10.11862/CJIC.20240438

    16. [16]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    17. [17]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    18. [18]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    19. [19]

      Lubing Qin Fang Sun Meiyin Li Hao Fan Likai Wang Qing Tang Chundong Wang Zhenghua Tang . 原子精确的(AgPd)27团簇用于硝酸盐电还原制氨:一种配体诱导策略来调控金属核. Acta Physico-Chimica Sinica, 2025, 41(1): 2403008-. doi: 10.3866/PKU.WHXB202403008

    20. [20]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

Metrics
  • PDF Downloads(22)
  • Abstract views(1293)
  • HTML views(449)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return