Preparation and Photoelectrochemical Properties of Au Nanorods/Graphite Phase Carbon Nitride Composites
- Corresponding author: LU Xiaoquan, luxq@nwnu.edu.cn
Citation:
QUAN Jingjing, QIN Dongdong, TAO Chunlan, HE Caihua, LI Yang, WANG Qiuhong, LU Xiaoquan. Preparation and Photoelectrochemical Properties of Au Nanorods/Graphite Phase Carbon Nitride Composites[J]. Chinese Journal of Applied Chemistry,
;2018, 35(5): 574-581.
doi:
10.11944/j.issn.1000-0518.2018.05.170139
Man M K L, Margiolakis A, Deckoff-Jones S. Imaging the Motion of Electrons Across Semiconductor Heterojunctions[J]. Nat Nano Technol, 2017,12(1):36-40.
Ma X G, Lv Y H, Xu J. A Strategy of Enhancing the Photoactivity of g-C3N4 via Doping of Nonmetal Elements:A First-Principles Study[J]. J Phys Chem C, 2012,116(44):23485-23493. doi: 10.1021/jp308334x
Wang F, Ng W K H, Jimmy C Y. Red Phosphorus:An Elemental Photocatalyst for Hydrogen Formation from Water[J]. Appl Catal B-Environ, 2012,111:409-414.
Ong W J, Tan L L, Ng Y H. Graphitic Carbon Nitride (g-C3N4)-Based Photocatalysts for Artificial Photosynthesis and Environmental Remediation:Are We a Step Closer to Achieving Sustainability?[J]. Chem Rev, 2016,116(12):7159-7329. doi: 10.1021/acs.chemrev.6b00075
Zhang Y J, Mori T, Ye J H. Polymeric Carbon Nitrides:Semiconducting Properties and Emerging Applications in Photocatalysis and Photoelectrochemical Energy Conversion[J]. Sci Adv Mater, 2012,4:282-291. doi: 10.1166/sam.2012.1283
Lou S, Zhou Z, Shen Y. Comparison Study of the Photoelectrochemical Activity of Carbon Nitride with Different Photoelectrode Configurations[J]. ACS Appl Mater Interfaces, 2016,8(34):22287-22294. doi: 10.1021/acsami.6b09699
Zhou Z, Shen Y, Li Y. Chemical Cleavage of Layered Carbon Nitride with Enhanced Photoluminescent Performances and Photoconduction[J]. ACS Nano, 2015,9(12):12480-12487. doi: 10.1021/acsnano.5b05924
Liu J H, Zhang T K, Wang Z C. Simple Pyrolysis of Urea into Graphitic Carbon Nitride With Recyclable Adsorption and Photocatalytic Activity[J]. J Mater Chem A, 2011,21(38):14398-14401. doi: 10.1039/c1jm12620b
Dong F, Sun Y J, Wu L W. Facile Transformation of Low Cost Thiourea into Nitrogen-Rich Graphitic Carbon Nitride Nanocatalyst with High Visible Light Photocatalytic Performance[J]. Catal Sci Technol, 2012,2(7):1332-1335. doi: 10.1039/c2cy20049j
Hou Y, Wen Z, Cui S. Strongly Coupled Ternary Hybrid Aerogels of N-Deficient Porous Graphitic-C3N4 Nanosheets/N-Doped Graphene/NiFe-Layered Double Hydroxide for Solar-Driven Photoelectrochemical Water Oxidation[J]. Nano Lett, 2016,16(4):2268-2277. doi: 10.1021/acs.nanolett.5b04496
Xu H, Yan J, Xu Y G. Novel Visible Light Driven AgX/Graphite-like C3N4(X=Br, I) Hybrid Materials with Synergistic Photocatalytic Activity[J]. Appl Catal B-Environ, 2013,129:182-193. doi: 10.1016/j.apcatb.2012.08.015
Liu J, Zhang Y, Lu L. Self-Regenerated Solar-Driven Photocatalytic Water-Splitting by Urea Derived Graphitic Carbon Nitride with Platinum Nanoparticles[J]. Chem Commun, 2012,48(70):8826-8828. doi: 10.1039/c2cc33644h
Pany S, Naik B, Martha S. Plasmon Induced Nano Au Particle Decorated over S, N-Modified TiO2 for Exceptional Photocatalytic Hydrogen Evolution under Visible Light[J]. ACS Appl Mater Interfaces, 2014,6(2):839-846. doi: 10.1021/am403865r
Guo Y, Chu S, Yan S C. Developing a Polymeric Semiconductor Photocatalyst with Visible Light Response[J]. Chem Commun, 2010,46(39):7325-7327. doi: 10.1039/c0cc02355h
Wang H J, Yang K H, Hsu S C. Photothermal Effects from Au Cu2O Core Shell Nanocubes, Octahedra, and Nanobars with Broad Near-Infrared Absorption Tunability[J]. Nanoscale, 2016,8(2):965-972. doi: 10.1039/C5NR06847A
Lou Z, Fujitsuka M, Majima T. Two-Dimensional Au-Nanoprism/Reduced Graphene Oxide/Pt-Nanoframe as Plasmonic Photocatalysts with Multiplasmon Modes Boosting Hot Electron Transfer for Hydrogen Generation[J]. J Phys Chem Lett, 2017,8(4):844-849. doi: 10.1021/acs.jpclett.6b03045
Brus L. Noble Metal Nanocrystals:Plasmon Electron Transfer Photochemistry and Single-Molecule Raman Spectroscopy[J]. Acc Chem Res, 2008,41(12):1742-1749. doi: 10.1021/ar800121r
Nie S, Emory S R. Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering[J]. Science, 1997,275(5303):1102-1106. doi: 10.1126/science.275.5303.1102
Jain P K, Huang X, El-Sayed I H. Noble Metals on the Nanoscale:Optical and Photothermal Properties and Some Applications in Imaging, Sensing, Biology, and Medicine[J]. Acc Chem Res, 2008,41(12):1578-1586. doi: 10.1021/ar7002804
Atwater H A, Polman A. Plasmonics for Improved Photovoltaic Devices[J]. Nat Mater, 2010,9(3):205-213. doi: 10.1038/nmat2629
Liang W B, Church T L, Harris A T. Biogenic Synthesis of Photocatalytically Active Ag/TiO2 and Au/TiO2 Composites[J]. Green Chem, 2012,14:968-975. doi: 10.1039/c2gc16082j
Tian K, Liu W J, Jiang H. Comparative Investigation on Photoreactivity and Mechanism of Biogenic and Chemosythetic Ag/C3N4 Composites under Visible Light Irradiation[J]. ACS Sustain Chem Eng, 2015,3(2):269-276. doi: 10.1021/sc500646a
Niu W X, Zheng S L, Wang D W. Selective Synthesis of Single-Crystalline Rhombic Dodecahedral, Octahedral, and Cubic Gold Nanocrystals[J]. J Am Chem Soc, 2008,131(2):697-703.
Meiqing Yang , Lu Wang , Haozi Lu , Yaocheng Yang , Song Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-. doi: 10.3866/PKU.WHXB202310046
Yinuo Wang , Siran Wang , Yilong Zhao , Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063
Zhen Yao , Bing Lin , Youping Tian , Tao Li , Wenhui Zhang , Xiongwei Liu , Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033
Zhengli Hu , Jia Wang , Yi-Lun Ying , Shaochuang Liu , Hui Ma , Wenwei Zhang , Jianrong Zhang , Yi-Tao Long . Exploration of Ideological and Political Elements in the Development History of Nanopore Electrochemistry. University Chemistry, 2024, 39(8): 344-350. doi: 10.3866/PKU.DXHX202401072
Zhihuan XU , Qing KANG , Yuzhen LONG , Qian YUAN , Cidong LIU , Xin LI , Genghuai TANG , Yuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447
Zhuo Wang , Xue Bai , Kexin Zhang , Hongzhi Wang , Jiabao Dong , Yuan Gao , Bin Zhao . MOF模板法合成氮掺杂碳材料用于增强电化学钠离子储存和去除. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-. doi: 10.3866/PKU.WHXB202405002
Qingtang ZHANG , Xiaoyu WU , Zheng WANG , Xiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115
Pengcheng Yan , Peng Wang , Jing Huang , Zhao Mo , Li Xu , Yun Chen , Yu Zhang , Zhichong Qi , Hui Xu , Henan Li . Engineering Multiple Optimization Strategy on Bismuth Oxyhalide Photoactive Materials for Efficient Photoelectrochemical Applications. Acta Physico-Chimica Sinica, 2025, 41(2): 100014-. doi: 10.3866/PKU.WHXB202309047
Fanpeng Meng , Fei Zhao , Jingkai Lin , Jinsheng Zhao , Huayang Zhang , Shaobin Wang . 优化氮化碳纳米片/球形共轭聚合物S型异质结界面电场以促进析氢反应. Acta Physico-Chimica Sinica, 2025, 41(8): 100095-. doi: 10.1016/j.actphy.2025.100095
Jinyi Sun , Lin Ma , Yanjie Xi , Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094
Jiahong ZHENG , Jingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170
Hongbo Zhang , Yihong Tang , Suxia Zhang , Yuanting Li . Electrochemical Monitoring of Photocatalytic Degradation of Phenol Pollutants: A Recommended Comprehensive Analytical Chemistry Experiment. University Chemistry, 2024, 39(6): 326-333. doi: 10.3866/PKU.DXHX202310013
Jiarong Feng , Yejie Duan , Chu Chu , Dezhen Xie , Qiu'e Cao , Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016
Yukun Chang , Haoqin Huang , Baolei Wang . Preparation of Trans-Cinnamic Acid via “One-Pot” Protocol of Aldol Condensation-Hydrolysis Reaction: Recommending an Improved Organic Synthesis Experiment. University Chemistry, 2024, 39(4): 322-328. doi: 10.3866/PKU.DXHX202309095
Renxiao Liang , Zhe Zhong , Zhangling Jin , Lijuan Shi , Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024
Shengbiao Zheng , Liang Li , Nini Zhang , Ruimin Bao , Ruizhang Hu , Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096
Shuhui Li , Rongxiuyuan Huang , Yingming Pan . Electrochemical Synthesis of 2,5-Diphenyl-1,3,4-Oxadiazole: A Recommended Comprehensive Organic Chemistry Experiment. University Chemistry, 2025, 40(5): 357-365. doi: 10.12461/PKU.DXHX202407028
Hong Yan , Wenfeng Wang , Keyin Ye , Yaofeng Yuan . Organic Electrochemistry and Its Integration into Chemistry Teaching. University Chemistry, 2025, 40(5): 301-310. doi: 10.12461/PKU.DXHX202407027
Linbao Zhang , Weisi Guo , Shuwen Wang , Ran Song , Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009
Shuhui Li , Xucen Wang , Yingming Pan . Exploring the Role of Electrochemical Technologies in Everyday Life. University Chemistry, 2025, 40(3): 302-307. doi: 10.12461/PKU.DXHX202406059