Citation: ZHANG Pan, ZHOU Kui, CHAEMCHUEN Somboon, CHEN Cheng, VERPOORT Francis. Progress of Metal Oxide and Metal-Organic Framework Composite Materials[J]. Chinese Journal of Applied Chemistry, ;2018, 35(4): 369-380. doi: 10.11944/j.issn.1000-0518.2018.04.170382 shu

Progress of Metal Oxide and Metal-Organic Framework Composite Materials

  • Corresponding author: VERPOORT Francis, francis.verpoort@ugent.be
  • Received Date: 26 October 2017
    Revised Date: 11 December 2017
    Accepted Date: 16 January 2018

    Fund Project: Supported by the National Natural Science Foundation of China(No.21502146)the National Natural Science Foundation of China 21502146

Figures(11)

  • Metal oxide@MOF(metal-organic framework) composite materials have emerged as a new class of functional materials and attracted considerable interests in many fields due to the unique properties in combination of metal oxide with MOF, which has been an important research direction of MOF materials in recent years. In this review, we systematically summarize the research progress towards various synthetic methods for metal oxide@MOF composite materials, such as epitaxial growth method, gas phase infiltration method and template method. The advantages and disadvantages of these methods are discussed, respectively. Applications of metal oxide@MOFs composite materials in adsorption and separation, catalysis, sensing, biomedical and potential applications of metal oxide@MOFs composite materials in electrochemical research are also discussed. In order to expand its application in industry, the improvement of synthetic methods, the preparation of new functional metal oxides and the exploration of new structures are proposed as the main future research and development directions of metal oxide@MOFs composite materials.
  • 加载中
    1. [1]

      Abrahams B, Hoskins B, Michail D. Assembly of Porphyrin Building Blocks into Network Structures with Large Channels[J]. Nature, 1994,369(6483):727-729. doi: 10.1038/369727a0

    2. [2]

      Li H, Eddaoudi M, O'keeffe M. Design and Synthesis of an Exceptionally Stable and Highly Porous Metal-Organic Framework[J]. Nature, 1999,402(6759):276-279. doi: 10.1038/46248

    3. [3]

      Hupp J T, Poeppelmeier K R. Better Living Through Nanopore Chemistry[J]. Science, 2005,309(5743):2008-2009. doi: 10.1126/science.1117808

    4. [4]

      Silva P, Vilela S M, Tom J P. Multifunctional Metal-Organic Frameworks:From Academia to Industrial Applications[J]. Chem Soc Rev, 2015,44(19):6774-6803. doi: 10.1039/C5CS00307E

    5. [5]

      Chaemchuen S, Kabir N A, Zhou K. Metal-Organic Frameworks for Upgrading Biogas via CO2 Adsorption to Biogas Green Energy[J]. Chem Soc Rev, 2013,42(24):9304-9332. doi: 10.1039/c3cs60244c

    6. [6]

      Czaja A U, Trukhan N, Mller U. Industrial Applications of Metal-Organic Frameworks[J]. Chem Soc Rev, 2009,38(5):1284-1293. doi: 10.1039/b804680h

    7. [7]

      Sun C Y, Qin C, Wang C G. Chiral Nanoporous Metal-Organic Frameworks with High Porosity as Materials for Drug Delivery[J]. Adv Mater, 2011,23(47):5629-5632. doi: 10.1002/adma.v23.47

    8. [8]

      Li S, Huo F. Metal-Organic Framework Composites:From Fundamentals to Applications[J]. Nanoscale, 2015,7(17):7482-7501. doi: 10.1039/C5NR00518C

    9. [9]

      Zhu Q L, Xu Q. Metal-Organic Framework Composites[J]. Chem Soc Rev, 2014,43(16):5468-5512. doi: 10.1039/C3CS60472A

    10. [10]

      Horiuchi Y, Toyao T, Saito M. Visible-Light-Promoted Photocatalytic Hydrogen Production by Using an Amino-functionalized Ti(Ⅳ) Metal-Organic Framework[J]. J Phys Chem C, 2012,116(39):20848-20853. doi: 10.1021/jp3046005

    11. [11]

      Li Z, Yin L. Sandwich-like Reduced Graphene Oxide Wrapped MOF-derived ZnCo2O4-ZnO-C on Nickel Foam as Anodes for High Performance Lithium Ion Batteries[J]. J Mater Chem A, 2015,3(43):21569-21577. doi: 10.1039/C5TA05733G

    12. [12]

      Lykourinou V, Chen Y, Wang X S. Immobilization of MP-11 into a Mesoporous Metal-Organic Framework, MP-11@mesoMOF:A New Platform for Enzymatic Catalysis[J]. J Am Chem Soc, 2011,133(27):10382-10385. doi: 10.1021/ja2038003

    13. [13]

      Bradshaw D, Garai A, Huo J. Metal-Organic Framework Growth at Functional Interfaces:Thin Films and Composites for Diverse Applications[J]. Chem Soc Rev, 2012,41(6):2344-2381. doi: 10.1039/C1CS15276A

    14. [14]

      Uemura T, Yanai N, Kitagawa S. Polymerization Reactions in Porous Coordination Polymers[J]. Chem Soc Rev, 2009,38(5):1228-1236. doi: 10.1039/b802583p

    15. [15]

      Ke F, Qiu L G, Yuan Y P. Fe3O4@MOF Core-Shell Magnetic Microspheres with a Designable Metal-Organic Framework Shell[J]. J Mater Chem, 2012,22(19):9497-9500. doi: 10.1039/c2jm31167d

    16. [16]

      Chen X, Ding N, Zang H. Fe3O4@MOF Core-Shell Magnetic Microspheres for Magnetic Solid-Phase Extraction of Polychlorinated Biphenyls from Environmental Water Samples[J]. J Chromatogr A, 2013,1304(16):241-245.  

    17. [17]

      Zhang C F, Qiu L G, Ke F. A Novel Magnetic Recyclable Photocatalyst Based on a Core-Shell Metal-Organic Framework Fe3O4@MIL-100(Fe) for the Decolorization of Methylene Blue Dye[J]. J Mater Chem A, 2013,1(45):14329-14334. doi: 10.1039/c3ta13030d

    18. [18]

      Sun X, Gao G, Yan D. Synthesis and Electrochemical Properties of Fe3O4@MOF Core-Shell Microspheres as an Anode for Lithium Ion Battery Application[J]. Appl Surf Sci, 2017,405:52-59. doi: 10.1016/j.apsusc.2017.01.247

    19. [19]

      Zhang T, Zhang X, Yan X. Synthesis of Fe3O4@ZIF-8 Magnetic Core-Shell Microspheres and Their Potential Application in a Capillary Microreactor[J]. Chem Eng J, 2013,228(28):398-404.  

    20. [20]

      Zhang Y, Lan D, Wang Y. MOF-5 Decorated Hierarchical ZnO Nanorod Arrays and Its Photoluminescence[J]. Physica E, 2011,43(6):1219-1223. doi: 10.1016/j.physe.2011.02.004

    21. [21]

      Zacher D, Baunemann A, Hermes S. Deposition of Microcrystalline[Cu3(btc)2] and[Zn2(bdc)2(dabco)] at Alumina and Silica Surfaces Modified with Patterned Self Assembled Organic Monolayers:Evidence of Surface Selective and Oriented Growth[J]. J Mater Chem, 2007,17(27):2785-2792. doi: 10.1039/b703098c

    22. [22]

      Hermes S, Schrter M K, Schmid R. Metal@MOF:Loading of Highly Porous Coordination Polymers Host Lattices by Metal Organic Chemical Vapor Deposition[J]. Angew Chem Int Ed, 2005,44(38):6237-6241. doi: 10.1002/(ISSN)1521-3773

    23. [23]

      Hermes S, Schrder F, Amirjalayer S. Loading of Porous Metal-Organic Open Frameworks with Organometallic CVD Precursors:Inclusion Compounds of the Type[LnM]a@MOF-5[J]. J Mater Chem, 2006,16(25):2464-2472. doi: 10.1039/B603664C

    24. [24]

      Esken D, Noei H, Wang Y. ZnO@ZIF-8:Stabilization of Quantum Confined ZnO Nanoparticles by a Zinc Methylimidazolate Framework and Their Surface Structural Characterization Probed by CO2 Adsorption[J]. J Mater Chem, 2011,21(16):5907-5915. doi: 10.1039/c1jm10091b

    25. [25]

      Zhan W W, Kuang Q, Zhou J Z. Semiconductor@Metal-Organic Framework Core-Shell Heterostructures:A Case of ZnO@ZIF-8 Nanorods with Selective Photoelectrochemical Response[J]. J Am Chem Soc, 2013,135(5):1926-1933. doi: 10.1021/ja311085e

    26. [26]

      Wang F, Jia S, Li D. Self-template Synthesis of CuO@Cu3(BTC)2 Composite and Its Application in Cumene Oxidation[J]. Mater Lett, 2016,164:72-75. doi: 10.1016/j.matlet.2015.09.044

    27. [27]

      Yang J, Zhang F, Lu H. Hollow Zn/Co ZIF Particles Derived from Core-Shell ZIF-67@ZIF-8 as Selective Catalyst for the Semi-Hydrogenation of Acetylene[J]. Angew Chem Int Ed, 2015,54(37):10889-10893. doi: 10.1002/anie.201504242

    28. [28]

      Chen H, Shen K, Chen J. Hollow-ZIF-templated Formation of a ZnO@C-N-Co Core-Shell Nanostructure for Highly Efficient Pollutant Photodegradation[J]. J Mater Chem A, 2017,5(20):9937-9945. doi: 10.1039/C7TA02184D

    29. [29]

      Yang J, Ye H, Zhao F. A Novel CuxO Nanoparticles@ZIF-8 Composite Derived From Core-Shell Metal-Organic Frameworks for Highly Selective Electrochemical Sensing of Hydrogen Peroxide[J]. ACS Appl Mater Interfaces, 2016,8(31):20407-20414. doi: 10.1021/acsami.6b06436

    30. [30]

      Faustini M, Kim J, Jeong G Y. Microfluidic Approach Toward Continuous and Ultrafast Synthesis of Metal-Organic Framework Crystals and Hetero Structures in Confined Microdroplets[J]. J Am Chem Soc, 2013,135(39):14619-14626. doi: 10.1021/ja4039642

    31. [31]

      Chang N, Li Y X, He D Y. A "Molecule Pump" Prototype for Exceptionally High Efficiency Adsorption and Decomposition of Rhodamine B Based on the TiO2@MIL-100 Composite[J]. Anal Methods-UK, 2017,9(3):381-384. doi: 10.1039/C6AY02498J

    32. [32]

      Lee J, Farha O K, Roberts J. Metal-organic Framework Materials as Catalysts[J]. Chem Soc Rev, 2009,38(5):1450-1459. doi: 10.1039/b807080f

    33. [33]

      Ma L, Abney C, Lin W. Enantioselective Catalysis with Homochiral Metal-Organic Frameworks[J]. Chem Soc Rev, 2009,38(5):1248-1256. doi: 10.1039/b807083k

    34. [34]

      Müller M, Hermes S, Kähler K. Loading of MOF-5 with Cu and ZnO Nanoparticles by Gas-Phase Infiltration with Organometallic Precursors:Properties of Cu/ZnO@MOF-5 as Catalyst for Methanol Synthesis[J]. Chem Mater, 2008,20(14):4576-4587. doi: 10.1021/cm703339h

    35. [35]

      Wang W, Li Y, Zhang R. Metal-Organic Framework as a Host for Synthesis of Nanoscale Co3O4 as an Active Catalyst for CO Oxidation[J]. Catal Commun, 2011,12(10):875-879. doi: 10.1016/j.catcom.2011.02.001

    36. [36]

      Alvaro M, Carbonell E, Ferrer B. Semiconductor Behavior of a Metal-Organic Framework(MOF)[J]. Chem Eur J, 2007,13(18):5106-5112. doi: 10.1002/(ISSN)1521-3765

    37. [37]

      Mahata P, Madras G, Natarajan S. Novel Photocatalysts for the Decomposition of Organic Dyes Based on Metal-Organic Framework Compounds[J]. J Phys Chem B, 2006,110(28):13759-13768. doi: 10.1021/jp0622381

    38. [38]

      Schneider J, Matsuoka M, Takeuchi M. Understanding TiO2 photocatalysis:Mechanisms and Materials[J]. Chem Rev, 2014,114(19):9919-9986. doi: 10.1021/cr5001892

    39. [39]

      CHEN Shijie, TANG Xiaojun, CHEN Xi. Efficiency and Mechanism of Photocatalytic Oxidation of Norfloxacin in Wastewater by C/Fe-Bi2WO6[J]. Chinese J Appl Chem, 2017,34(8):936-945. doi: 10.11944/j.issn.1000-0518.2017.08.170019 

    40. [40]

      Xu Y, Lv M, Yang H. BiVO4/MIL-101 Composite Having the Synergistically Enhanced Visible Light Photocatalytic Activity[J]. RSC Adv, 2015,5(54):43473-43479. doi: 10.1039/C4RA11383G

    41. [41]

      Crake A, Christoforidis K C, Kafizas A. CO2 Capture and Photocatalytic Reduction Using Bifunctional TiO2/MOF Nanocomposites Under UV-Vis Irradiation[J]. Appl Catal B, 2017,210:131-140. doi: 10.1016/j.apcatb.2017.03.039

    42. [42]

      Liu Q, Low Z X, Li L. ZIF-8/Zn2GeO4 Nanorods with an Enhanced CO2 Adsorption Property in an Aqueous Medium for Photocatalytic Synthesis of Liquid Fuel[J]. J Mater Chem A, 2013,1(38):11563-11569. doi: 10.1039/c3ta12433a

    43. [43]

      Yan S, Ouyang S, Xu H. Co-ZIF-9/TiO2 Nanostructure for Superior CO2 Photoreduction Activity[J]. J Mater Chem A, 2016,4(39):15126-15133. doi: 10.1039/C6TA04620G

    44. [44]

      Cabello J A, Campelo J M, Garcia A. Knoevenagel Condensation in the Heterogeneous Phase Using Aluminum Phosphate-Aluminum Oxide as a New Catalyst[J]. J Org Chem, 1984,49(26):5195-5197. doi: 10.1021/jo00200a036

    45. [45]

      Chen B, Wang L, Xiao Y. A Luminescent Metal-Organic Framework with Lewis Basic Pyridyl Sites for the Sensing of Metal Ions[J]. Angew Chem Int Ed, 2009,48(3):500-503. doi: 10.1002/anie.v48:3

    46. [46]

      Falcaro P, Riccor , Yazdi A. Application of Metal and Metal Oxide Nanoparticles@MOFs[J]. Coord Chem Rev, 2016,307:237-254. doi: 10.1016/j.ccr.2015.08.002

    47. [47]

      Wehner T, Mandel K, Schneider M. Superparamagnetic Luminescent MOF@Fe3O4/SiO2 Composite Particles for Signal Augmentation by Magnetic Harvesting as Potential Water Detectors[J]. ACS Appl Mater Interfaces, 2016,8(8):5445-5452. doi: 10.1021/acsami.5b11965

    48. [48]

      GONG Wenming, KE Xiaofen, LI Zhipeng. Adsorption of Methylene Blue by Phosphomolybdiumtungstic Acid Decorated Metal Organic Framework MOF-5[J]. Chinese J Appl Chem, 2016,33(9):1047-1055.  

    49. [49]

      Sumida K, Rogow D L, Mason J A. Carbon Dioxide Capture in Metal-Organic Frameworks[J]. Chem Rev, 2011,112(2):724-781.  

    50. [50]

      Rowsell J L, Yaghi O M. Strategies for Hydrogen Storage in Metal-Organic Frameworks[J]. Angew Chem Int Ed, 2005,44(30):4670-4679. doi: 10.1002/(ISSN)1521-3773

    51. [51]

      Xiong Y, Ye F, Zhang C. Synthesis of Magnetic Porous γ-Fe2O3/C@HKUST-1 Composites for Efficient Removal of Dyes and Heavy Metal Ions from Aqueous Solution[J]. RSC Adv, 2015,5(7):5164-5172. doi: 10.1039/C4RA12468E

    52. [52]

      Qu Z G, Wang H, Zhang W. Highly Efficient Adsorbent Design Using a Cu-BTC/CuO/Carbon Fiber Paper Composite for High CH4/N2 Selectivity[J]. RSC Adv, 2017,7(23):14206-14218. doi: 10.1039/C6RA28124A

    53. [53]

      Cai W, Chu C C, Liu G. Metal-Organic Framework-Based Nanomedicine Platforms for Drug Delivery and Molecular Imaging[J]. Small, 2015,11(37):4806-4822. doi: 10.1002/smll.201500802

    54. [54]

      Sun C Y, Qin C, Wang X L. Metal-Organic Frameworks as Potential Drug Delivery Systems[J]. Expert Opin Drug Del, 2013,10(1):89-101. doi: 10.1517/17425247.2013.741583

    55. [55]

      Tao Y, Yanan C, Huaiyin C. Controllable Preparation of Two Dimensional Metal-or Covalent Organic Frameworks for Chemical Sensing and Biosensing[J]. Acta Chim Sin, 2017,75(4):339-350. doi: 10.6023/A16110592

    56. [56]

      Ke F, Yuan Y P, Qiu L G. Facile Fabrication of Magnetic Metal-Organic Framework Nanocomposites for Potential Targeted Drug Delivery[J]. J Mater Chem, 2011,21(11):3843-3848. doi: 10.1039/c0jm01770a

    57. [57]

      Li J, Wang J, Ling Y. Unprecedented Highly Efficient Capture of Glycopeptides by Fe3O4@Mg-MOF-74 Core-Shell Nanoparticles[J]. Chem Commun, 2017,53(28):4018-4021. doi: 10.1039/C7CC00447H

    58. [58]

      Wang L, Han Y, Feng X. Metal-Organic Frameworks for Energy Storage:Batteries and Supercapacitors[J]. Coord Chem Rev, 2016,307:361-381. doi: 10.1016/j.ccr.2015.09.002

    59. [59]

      Vinogradov A V, Zaake-hertling H, Hey-hawkins E. The First Depleted Heterojunction TiO2-MOF-Based Solar Cell[J]. Chem Commun, 2014,50(71):10210-10213. doi: 10.1039/C4CC01978D

    60. [60]

      Lohe M R, Gedrich K, Freudenberg T. Heating and Separation Using Nanomagnet-Functionalized Metal-Organic Frameworks[J]. Chem Commun, 2011,47(11):3075-3077. doi: 10.1039/c0cc05278g

  • 加载中
    1. [1]

      Mengzhen JIANGQian WANGJunfeng BAI . Research progress on low-cost ligand-based metal-organic frameworks for carbon dioxide capture from industrial flue gas. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 1-13. doi: 10.11862/CJIC.20240355

    2. [2]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    3. [3]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    4. [4]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    5. [5]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    6. [6]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    7. [7]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    8. [8]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    9. [9]

      Yongzhi LIHan ZHANGGangding WANGYanwei SUILei HOUYaoyu WANG . A two-dimensional metal-organic framework for the determination of nitrofurantoin and nitrofurazone in aqueous solution. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 245-253. doi: 10.11862/CJIC.20240307

    10. [10]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    11. [11]

      Xinzhe HUANGLihui XUYue YANGLiming WANGZhangyong LIUZhongjian WANG . Preparation and visible light responsive photocatalytic properties of BiSbO4/BiOBr. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 284-292. doi: 10.11862/CJIC.20240212

    12. [12]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    13. [13]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    14. [14]

      Qiuping Liu Yongxian Fan Wenxian Chen Mengdi Wang Mei Mei Genrong Qiang . Design of Ideological and Political Education for the Preparation Experiment of Ferrous Sulfate. University Chemistry, 2024, 39(2): 116-120. doi: 10.3866/PKU.DXHX202309083

    15. [15]

      Ran Yu Chen Hu Ruili Guo Ruonan Liu Lixing Xia Cenyu Yang Jianglan Shui . 杂多酸H3PW12O40高效催化MgH2储氢. Acta Physico-Chimica Sinica, 2025, 41(1): 2308032-. doi: 10.3866/PKU.WHXB202308032

    16. [16]

      Yongming Guo Jie Li Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057

    17. [17]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    18. [18]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    19. [19]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    20. [20]

      Meng Lin Hanrui Chen Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 163-168. doi: 10.3866/PKU.DXHX202308117

Metrics
  • PDF Downloads(16)
  • Abstract views(1999)
  • HTML views(933)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return