Citation: NIU Xiaodong, SUN Wei, QIU Xin, ZHANG Deping, TIAN Zheng, MENG Jian. Advances and Future Developments in Preparation of Mg-RE Alloys by Molten Salt Electrochemical Process[J]. Chinese Journal of Applied Chemistry, ;2018, 35(4): 381-393. doi: 10.11944/j.issn.1000-0518.2018.04.170212 shu

Advances and Future Developments in Preparation of Mg-RE Alloys by Molten Salt Electrochemical Process

  • Corresponding author: MENG Jian, jmeng@ciac.ac.cn
  • Received Date: 16 June 2017
    Revised Date: 9 August 2017
    Accepted Date: 6 September 2017

    Fund Project: Japan Society for the Promotion of Science GJHZ1413the National Key Technology Support Program 2012BAE01B00Supported by the National Key Technology Support Program(No.2012BAE01B00), Japan Society for the Promotion of Science(No.GJHZ1413)

Figures(7)

  • It is a high efficient method to prepare Mg-RE(rare earth) alloys in molten salt electrochemical process for its easy mass production and simple procedure. The RE element distributes uniformly and continuously in prepared Mg alloys. The heavy and light RE elements are extracted by electrolyzing from fluoride fusion and chloride fusion, respectively. Recent advances in preparation of Mg-RE alloys in molten salt electrochemical process are elaborately discussed from materials, electrolytic tank, electrode process, technical parameters and anodic gas absorption, and some beneficial advices focused on future developments about preparation of Mg-RE alloy are indicated.
  • 加载中
    1. [1]

      TANG Dingxiang, LIU Yujiu, ZHANG Hongjie, et al. The Material of Rare Earth[M]. Peking:Metallurgical Industry Press, 2011:416-434(in Chinese).

    2. [2]

      CHENG Zhenhua, YAN Hongge, CHEN Jihua, et al. Magnesium Alloy[M]. Peking:Chemical Industry Press, 2004:2-25(in Chinese).

    3. [3]

      Yang Q, Bu F, Tian Z. Influence of Trace Sr Additions on the Microstructures and the Mechanical Properties of Mg-Al-La-based Alloy[J]. Mater Sci Eng A, 2014,619:256-264. doi: 10.1016/j.msea.2014.09.092

    4. [4]

      Fan J, Qiu X, Niu X D. Microstructure, Mechanical Properties, in Vitro Degradation and Cytotoxicity Evaluations of Mg-1.5Y-1.2Zn-0.44Zr Alloys for Biodegradable Metallic Implants[J]. Mater Sci Eng C, 2013,33(4):2345-2352. doi: 10.1016/j.msec.2013.01.063

    5. [5]

      Niu X D, Sun W, Tian Z, et al. Electrochemical Behaviors of Die-Cast Mg-4Al-0. 4Mn-xPr(x=0, 1, 4) Alloys in NaCl Solution[C]. Adv Mater Res, 2013, (690/693): 82-88.

    6. [6]

      Liu K, Zhang J H, Lu H Y. Effect of the Long Periodic Stacking Structure and W-phase on the Microstructures and Mechanical Properties of the Mg-8Gd-xZn-0.4Zr Alloys[J]. Mater Des, 2010,31(1):210-219. doi: 10.1016/j.matdes.2009.06.030

    7. [7]

      Zhang J H, Zhang D P, Tian Z. Effect of Yttrium-Rich Misch Metal on the Microstructures, Mechanical Properties and Corrosion Behavior of Die Cast AZ91 Alloy[J]. J Alloys Compd, 2009,471(1):322-330.  

    8. [8]

      Zhang J H, Liu K, Fang D Q. Microstructures, Mechanical Properties and Corrosion Behavior of High-Pressure Die-Cast Mg-4Al-0.4Mn-xPr(x=1, 2, 4, 6) Alloys[J]. J Alloys Compd, 2009,480(2):810-819. doi: 10.1016/j.jallcom.2009.02.090

    9. [9]

      Zhang J H, Peng Y, Liu K. Effect of Substituting Cerium-Rich Mischmetal with Lanthanum on Microstructure and Mechanical Properties of Die-Cast Mg Al RE Alloys[J]. Mater Des, 2009,30(7):2372-2378. doi: 10.1016/j.matdes.2008.10.028

    10. [10]

      Zhang J H, Liu K, Fang D Q. Microstructure, Tensile Properties, and Creep Behavior of High-pressure Die-cast Mg-4Al-4RE-0.4Mn(RE=La, Ce) Alloys[J]. J Mater Sci, 2009,44(8):2046-2054. doi: 10.1007/s10853-009-3283-4

    11. [11]

      Song L W, Song Y W, Shan D Y. Product/Metal Ratio(PMR):A Novel Criterion for the Evaluation of Electrolytes on Micro-Arc Oxidation(MAO) of Mg and Its Alloys[J]. Sci China:Tech Sci, 2011,54(10):2795-2801. doi: 10.1007/s11431-011-4502-1

    12. [12]

      Li N L, Huang G J, Xin R L. Influence of Extrusion Ratio on Microstructure and Texture Developments of High-Temperature Extruded AZ31 Mg Alloy[J]. Sci China:Tech Sci, 2012,55(2):490-495. doi: 10.1007/s11431-011-4671-y

    13. [13]

      Yao J Y, Wang B S, Deng L P. Simulation of Texture Evolution and Deformation Mechanism in Mg-3Al-1Zn Alloy During Uniaxial Compression[J]. Sci China:Tech Sci, 2015,58(12):2052-2059. doi: 10.1007/s11431-015-5937-6

    14. [14]

      MENG Jian, NIU Xiaodong, SHEN Jiacheng, et al. Preparation of Magnesium Alloy Including Rare Earth: CN, 201110191455. 2[P]. 2011(in Chinese).

    15. [15]

      MENG Jian, NIU Xiaodong, SHEN Jiacheng, et al. Preparation of Magnesium Alloy Including Rare Earth: CN, 201110427077. 3[P]. 2011(in Chinese).

    16. [16]

      PENG Guanghuai, GUO Xuefeng, QIU Chengzhou. Preparation of Gd-Mg Master Alloy by Co-electrodeposition Method in Fluoride Molten Salt[J]. J Kunming Univ Sci Technol, 2010,35(2):16-19.  

    17. [17]

      XU Guangxian. Rare Earth(Vol. 2)[M]. Peking:Metallurgical Industry Press, 2005:147-180(in Chinese).

    18. [18]

      LI Ping, SUN Jinzhi, SONG Renying. Electro-deposition of Y-Mg Alloy by Dropping Cathode in Molten Salts[J]. J Chinese Rare Earth Soc, 1987,5(2):55-60.  

    19. [19]

      REN Yonghong, ZHANG Zhihong. Preparation Rare Earth and Magnesium Alloy in Chloride Molten Salts[C]. The 4th Annual Conference of Chinese Society of Rare Earth, 2000: 216-220(in Chinese).

    20. [20]

      ZHANG Yongjian. The Process Technology of Magnesium Electrolysis[M]. Changsha:Central South University Press, 2006:76-140(in Chinese).

    21. [21]

      CHEN Lini. Metallurgy and Environmental Protection of Light Metal[M]. Shenyang:Northeast University Press, 1991:191-254(in Chinese).

    22. [22]

      MENG Jian, WU Yaoming, ZHANG Hongjie, et al. Preparation of RE-Mg Master Alloy by Co-Cathodes in Molten Salts: CN, 200510119117. 2[P]. 2006-(in Chinese).

    23. [23]

      LIU Tengyun, YE Xiushen, LIU Haining. The Related Technical Problems in the Electrolytic Preparation of Rare Earth-Magnesium Alloys Using Incomplete Delay Drated Magnesium Chloride[J]. J Salt Lake Res, 2008,16(3):33-39.  

    24. [24]

      Kouji Yasuda, Seitaro Kobayashi, Toshiyuki Nohira. Electrochemical formation of Dy-Ni Alloys in Molten NaCl-KCl-DyCl3[J]. Electrochim Acta, 2013,106(12):293-300.  

    25. [25]

      Takahisa Iida, Toshiyuki Nohira, Yasuhiko Ito. Electrochemical Formation of Sm-Ni alloy Films in a Molten LiCl-KCl-SmCl3 System[J]. Electrochim Acta, 2001,46(16):2537-2544. doi: 10.1016/S0013-4686(01)00470-4

    26. [26]

      Yan Y D, Zhan M L, Han W. Electrochemical Formation of Mg-Li Alloys at Solid Magnesium Electrode from LiCl-KCl Melts[J]. Electrochim Acta, 2008,53(8):3323-3328. doi: 10.1016/j.electacta.2007.11.043

    27. [27]

      Tang H, Ren Y M, Wang S F. Electrochemical Co-Deposition of Mg-Ca Alloys from KCl-CaCl2-MgCl2 Melts[J]. J Electrochem Soc, 2015,162(10):D520-D524. doi: 10.1149/2.0421510jes

    28. [28]

      Monika Zablocka-Malicka, Barlomiej Ciechanowski, Włodzimierz Szczepaniak. Internal Cation Mobility in Molten LiCl-NdCl3 System[J]. Electrochim Acta, 2008,53(5):2081-2086. doi: 10.1016/j.electacta.2007.08.073

    29. [29]

      Cassayre L, Serp J, Soucek P. Electrochemistry of Thorium in KCl-LiCl Eutectic Melts[J]. Electrochim Acta, 2007,52(26):7432-7437. doi: 10.1016/j.electacta.2007.06.022

    30. [30]

      Toshihide Takenaka, Yusuke Naka, Narukawa Nobuo. Direct Electrodeposition of Mg Containing La in Molten Salt and Its Corrosion Property[J]. Electrochemistry, 2005,73(8)706.  

    31. [31]

      Suddhasattwa Ghosh, Vandarkuzhali S, Venkatesh P. Redox Behaviour of Cerium Oxychloride in Molten MgCl2-NaCl-KCl Eutectic[J]. Electrochim Acta, 2006,52(3):1206-1212. doi: 10.1016/j.electacta.2006.07.019

    32. [32]

      Mathieson AlkallWors. Preparation Fusions Containing Magnesium Chloride: US, 2406935[P]. 1946.

    33. [33]

      General Motors Corporation. Electrolytic Magnesium Production Process Using Mixed Chloride-Fluoride Electrolytes: US, 5853560[P]. 1998.

    34. [34]

      MA Peihua. Preparation of Anhydrous MgCl2 by MgCl2·6H2O Dehydrating: CN, 1234608C[P]. 2006(in Chinese).

    35. [35]

      SUN Qingguo, DU Yongsheng, WANG Shidong, et al. Method of Abandon Water in Gas During Prepared Anhydrous MgCl2: CN, 101417204[P]. 2009-(in Chinese).

    36. [36]

      MA Peihua, ZHU Minxiong, SUN Qingguo. Appratus of Producing Anhydrous MgCl2 by MgCl2·2H2O: CN, 2522410[P]. 2002(in Chinese).

    37. [37]

      GaliGeli J, HUANG Fusheng. Produced Method of Anhydrous Chloride Magnesium: CN, 94194221[P]. 1996(in Chinese).

    38. [38]

      WU Yulong, YANG Mingde, DANG Jie, et al. Method of Anhydrous Chloride Magnesium by Dehydrating MgCl2·6H2O: CN, 1944261[P]. 2007(in Chinese).

    39. [39]

      CHEN Shengchang. Method of Preparation MgCl2·2H2O: CN, 94119264[P]. 1996(in Chinese).

    40. [40]

      MENG Jian, FAN Hongwei, DING Jianye. Dehydrated Apparatus in Vacuum for Producing Anhydrous Chloride Rare Earth: CN, 2765666[P]. 2006(in Chinese).

    41. [41]

      SUN Hongwei, ZHAN Xiaoli. Exploitation and Ultilization About Rare Earth and Western Resource[M]. Peking:China Light Industry Press, 2003:172-195(in Chinese).

    42. [42]

      YAN Yongde. Study on Preparation and Mechanism of Mg-Li Based Alloy by Electrolysis in Molten Salts[D]. Harbin: Harbin Engineering University, 2009(in Chinese).

    43. [43]

      MENG Jian, FANG Daqing, ZHANG Deping, et al. Preparation of Magnesium Master Alloy Containing LaPrCe: CN, 200710300339. 3[P]. 2008(in Chinese).

    44. [44]

      Х.Л.STELILIZ А.Ю, TAICi В.С. Magnesium Refining(Vol.1)[M]. Peking:Heavy Industry Press, 1955:100-140(in Chinese).

    45. [45]

      FAN Yu, WU Guohua, GAO Hongtao. Effect of La on the Mechanical Property and Corrosion Resistance of AZ91D Magnesium Alloy[J]. Acta Met Sin, 2006,42(1):35-40.  

    46. [46]

      LIU Shengfa, LIU Linyan, HUANG Shangyu. Influence of Cerium on Corrosion of AZ91 Magnesium Alloy[J]. J Chinese Rare Earth Soc, 2006,24(2):211-216.  

    47. [47]

      NIU Xiaodong, QIU Xin, SUN Wei. Research on Parameters and Mechanism of Preparation of Mg-RE Alloy in Magnesium Electrolyzer[J]. J Chinese Rare Earth Soc, 2013,31(4):482-487.  

    48. [48]

      MENG Jian, LI Fumin, NIU Xiaodong, et al. Absorber of Chlorine Gas Produced by Chloride Electrolysis: CN, 200720094552. 9[P]. 2008(in Chinese).

    49. [49]

      MENG Jian, NIU Xiaodong, LI Fumin, et al. Method and Absorber of Chlorine Gas Produced by Chloride Electrolysis: CN, 200710056003. 7[P]. 2008(in Chinese).

    50. [50]

      ZHANG Milin, HAN Wei, WANG Fengli, et al. Method of Preparing Al-Li-Gd Alloy: CN, 102181884A[P]. 2011(in Chinese).

    51. [51]

      LI Mei, LI Wei, HAN Wei, et al. Preparation Pr and Al-Li-Pr Alloy by Combined Electrolysis with Reduction: CN, 103305876B[P]. 2015(in Chinese).

    52. [52]

      ZHANG Milin, HAN Wei, LI Mei, et al. Preparation of Al-Li-Sm Alloy by Electrolysis in Molten Salts: CN, 101886197B[P]. 2012(in Chinese).

    53. [53]

      ZHANG Milin, LI Mei, ZHAO Quanyou, et al. Preparation of Mg-Li-Ho Alloy by Electrolysis in Molten Salts: CN, 101302593B[P]. 2010(in Chinese).

    54. [54]

      ZHANG Milin, HAN Wei, HOU Zhiyao, et al. Preparation of Mg-Li-Ca Alloy by Electrolysis in Molten Salts: CN, 101148773B[P]. 2010(in Chinese).

    55. [55]

      ZHANG Milin, YAN Yongde, HAN Wei, et al. Preparation of Mg-Li-Zn Alloy by Electrolysis in Molten Salts: CN, 101319337B[P]. 2010(in Chinese).

    56. [56]

      ZHANG Milin, HAN Wei, TIAN Yang, et al. Preparation of Mg-Li-CeLa Alloy by Electrolysis in Molten Salts: CN, 101302594B[P]. 2010(in Chinese).

    57. [57]

      ZHANG Milin, TIAN Yang, HAN Wei, et al. Preparation of Mg-Li-Sm Alloy by Electrolysis in Molten Salts: CN, 100588731[P]. 2010(in Chinese).

    58. [58]

      ZHANG Milin, HAN Wei, LI Kaifeng, et al. Preparation of Mg-Li-Dy Alloy by Electrolysis in Molten Salts: CN, 100588732[P]. 2010(in Chinese).

    59. [59]

      Zhang M L, Cao P, Han W. Preparation of Mg-Li-La Alloys by Electrolysis in Molten Salt[J]. Trans Nonferrous Met Soc China, 2012,1(1):16-22.  

    60. [60]

      Li X, Yan Y D, Zhang M L. Fabrication of Yb-Rich Mg-Li-Yb Alloys via Co-Reduction of Mg, Li and Yb[J]. J Electrochem Soc, 2014,161(12):704-711. doi: 10.1149/2.1011412jes

    61. [61]

      Xue Y, Yan Y D, Zhang M L. Electrochemical Formation of Mg-Li-Y Alloys by Co-Deposition of Magnesium, Lithium and Yttrium Ions in Molten Chlorides[J]. J Rare Earths, 2012,30(10):1048-1054. doi: 10.1016/S1002-0721(12)60177-X

    62. [62]

      Zhang M, Han W, Zhang M L. Electrochemical Formation Process and Phase Control of Mg-Li-Ce Alloys in Molten Chlorides[J]. J Rare Earths, 2013,31(6):609-615. doi: 10.1016/S1002-0721(12)60329-9

    63. [63]

      Cao P, Zhang M L, Han W. Electrochemical Behaviour of Erbium and Preparation of Mg-Li-Er Alloys by Codeposition[J]. J Rare Earths, 2011,29(8):763-767. doi: 10.1016/S1002-0721(10)60538-8

    64. [64]

      Wei S Q, Zhang M L, Han W. Electrochemical Codeposition of Mg-Li-Gd Alloys from LiCl-KCl-MgCl2-Gd2O3 Melts[J]. Trans Nonferrous Met Soc China, 2011,21(4):825-829. doi: 10.1016/S1003-6326(11)60788-7

    65. [65]

      Han W, Tian Y, Zhang M L. Preparing Different Phases of Mg-Li-Sm Alloys by Molten Salt Electrolysis in LiCl-KCl-MgCl2-SmCl3 Melts[J]. J Rare Earths, 2010,28(2):227-231. doi: 10.1016/S1002-0721(09)60085-5

    66. [66]

      Tao H, Yan Y D, Zhang M L. Fabrication of Mg-Pr and Mg-Li-Pr Alloys by Electrochemical Co-Reduction from Their Molten Chlorides[J]. Electrochim Acta, 2013,107:209-215. doi: 10.1016/j.electacta.2013.05.129

  • 加载中
    1. [1]

      Jinghua Wang Yanxin Yu Yanbiao Ren Yesheng Wang . Integration of Science and Education: Investigation of Tributyl Citrate Synthesis under the Promotion of Hydrate Molten Salts for Research and Innovation Training. University Chemistry, 2024, 39(11): 232-240. doi: 10.3866/PKU.DXHX202402057

    2. [2]

      Jiaxin Su Jiaqi Zhang Shuming Chai Yankun Wang Sibo Wang Yuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-. doi: 10.3866/PKU.WHXB202408012

    3. [3]

      Xuanzhu Huo Yixi Liu Qiyu Wu Zhiqiang Dong Chanzi Ruan Yanping Ren . Integrated Experiment of “Electrolytic Preparation of Cu2O and Gasometric Determination of Avogadro’s Constant: Implementation, Results, and Discussion: A Micro-Experiment Recommended for Freshmen in Higher Education at Various Levels Across the Nation. University Chemistry, 2024, 39(3): 302-307. doi: 10.3866/PKU.DXHX202308095

    4. [4]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    5. [5]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    6. [6]

      Liang TANGJingfei NIKang XIAOXiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139

    7. [7]

      Changqing MIAOFengjiao CHENWenyu LIShujie WEIYuqing YAOKeyi WANGNi WANGXiaoyan XINMing FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192

    8. [8]

      Feiya Cao Qixin Wang Pu Li Zhirong Xing Ziyu Song Heng Zhang Zhibin Zhou Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094

    9. [9]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    10. [10]

      Mingyang Men Jinghua Wu Gaozhan Liu Jing Zhang Nini Zhang Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019

    11. [11]

      Shiyi WANGChaolong CHENXiangjian KONGLansun ZHENGLasheng LONG . Polynuclear lanthanide compound [Ce4Ce6(μ3-O)4(μ4-O)4(acac)14(CH3O)6]·2CH3OH for the hydroboration of amides to amine. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 88-96. doi: 10.11862/CJIC.20240342

    12. [12]

      Xiao Liu Guangzhong Cao Mingli Gao Hong Wu Hongyan Feng Chenxiao Jiang Tongwen Xu . Seawater Salinity Gradient Energy’s Job Application in the Field of Membranes. University Chemistry, 2024, 39(9): 279-282. doi: 10.3866/PKU.DXHX202306043

    13. [13]

      Chengqian Mao Yanghan Chen Haotong Bai Junru Huang Junpeng Zhuang . Photodimerization of Styrylpyridinium Salt and Its Application in Silk Screen Printing. University Chemistry, 2024, 39(5): 354-362. doi: 10.3866/PKU.DXHX202312014

    14. [14]

      Xinhao Yan Guoliang Hu Ruixi Chen Hongyu Liu Qizhi Yao Jiao Li Lingling Li . Polyethylene Glycol-Ammonium Sulfate-Nitroso R Salt System for the Separation of Cobalt (II). University Chemistry, 2024, 39(6): 287-294. doi: 10.3866/PKU.DXHX202310073

    15. [15]

      Wenjie SHIFan LUMengwei CHENJin WANGYingfeng HAN . Synthesis and host-guest properties of imidazolium-functionalized zirconium metal-organic cage. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 105-113. doi: 10.11862/CJIC.20240360

    16. [16]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    17. [17]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    18. [18]

      Xi Xu Chaokai Zhu Leiqing Cao Zhuozhao Wu Cao Guan . Experiential Education and 3D-Printed Alloys: Innovative Exploration and Student Development. University Chemistry, 2024, 39(2): 347-357. doi: 10.3866/PKU.DXHX202308039

    19. [19]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    20. [20]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

Metrics
  • PDF Downloads(25)
  • Abstract views(3027)
  • HTML views(1220)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return