Citation: GUAN Xiaolin, MENG Li, JIA Tianming, JIN Qijun, LU Baocui, LAI Shoujun. Synthesis and Electroluminescent Properties of a Liquid Crystalline Linear Conjugated Arylacetylene Derivative[J]. Chinese Journal of Applied Chemistry, ;2018, 35(4): 426-435. doi: 10.11944/j.issn.1000-0518.2018.04.170206 shu

Synthesis and Electroluminescent Properties of a Liquid Crystalline Linear Conjugated Arylacetylene Derivative

  • Corresponding author: LAI Shoujun, shoujunlai@163.com
  • Received Date: 12 June 2017
    Revised Date: 12 May 2017
    Accepted Date: 22 June 2017

    Fund Project: the National Natural Science Foundation of China 21504070the National Natural Science Foundation of China 51363019Supported by the National Natural Science Foundation of China(No.51363019, No.21504070), the Specialized Research Fund for the Doctoral Program of Higher Education(No.20136203120002)the Specialized Research Fund for the Doctoral Program of Higher Education 20136203120002

Figures(7)

  • A novel asymmetrical linear conjugated diacetylene derivative, (2-(2-(4-aminophenyl)ethynyl)-5-(4-(2-(hexyloxy)naphthalen-6-yl)buta-1, 3-diynyl)phenyl)methanol, was designed and synthesized from phenylamine and arylacetylene by Sonogashira reaction. By attaching the phenylamino substituent to arylacetylene, torsional states will be formed under conditions of the absence of electron withdrawing group and an effective intramolecular charge-transfer occurs, which helps improve electro-optical conversion efficiency. Furthermore, the introduction of liquid crystal property improves the charge balance of electron and hole in device and device efficiency. Moreover, an organic light-emitting device(OLED) device using the compound as emitters was fabricated, which exhibited yellow-green emission and low turn-on voltages of 7.2 V and excellent electroluminescent stability. The maximum brightness value was 126 cd/m2. So, the diacetylene derivative is a promising materials for OLED devices.
  • 加载中
    1. [1]

      Zhang C W, Qiao B, Zhao S L. Transient Analysis on Stored Charges in Organic Light-emitting Diodes and Their Application in Alternating Current Driven Electroluminescence[J]. Org Electron, 2016,39:348-353. doi: 10.1016/j.orgel.2016.10.019

    2. [2]

      Klaus K, Christoph G, Pablo M. Atomic-Scale Imaging and Spectroscopy of Electroluminescence at Molecular Interfaces[J]. Chem Rev, 2017,117(7):5174-5222. doi: 10.1021/acs.chemrev.6b00645

    3. [3]

      Hiroki T, Naoya A, Yu H. Tunable Full-Color Electroluminescence from All-Organic Optical Upconversion Devices by Near-Infrared Sensing[J]. ACS Photonics, 2017,4(2):223-227. doi: 10.1021/acsphotonics.6b00964

    4. [4]

      Michael C C, Lydia S V, Herv B. Ordinary and Hot Electroluminescence from Single-Molecule Devices:Controlling the Emission Color by Chemical Engineering[J]. Nano Lett, 2016,16(10):6480-6484. doi: 10.1021/acs.nanolett.6b02997

    5. [5]

      PENG Sai, CHEN Kai, SHENG Yafei. Research Progress on Materials for Organic Light-emitting Diodes(OLEDs)[J]. Mater Rev, 2015,29(3):41-56.  

    6. [6]

      Jadhav T, Choi J M, Dhokale B. Effect of End Groups on Mechanochromism and Electroluminescence in Tetraphenylethylene Substituted Phenanthroimidazoles[J]. J Phys Chem C, 2016,120(33):18487-1849. doi: 10.1021/acs.jpcc.6b06277

    7. [7]

      Lee J, Park J. Synthesis and Electroluminescence of Novel Pyrene-Fused Chromophores[J]. Org Lett, 2015,17(16):3960-3963. doi: 10.1021/acs.orglett.5b01793

    8. [8]

      Boudreault P L T, Hennek J W, Loser S. New Semiconductors Based on 2, 2'-Ethyne-1, 2-diylbis[3-(alk-1-yn-1-yl) thiophene] for Organic Opto-Electronics[J]. Chem Mater, 2012,24(15):2929-2942. doi: 10.1021/cm301095x

    9. [9]

      Charvet R, Yamamoto Y, Sasaki T. Segregated and Alternately Stacked Donor/Acceptor Nanodomains in Tubular Morphology Tailored with Zinc Porphyrin-C60 Amphiphilic Dyads:Clear Geometrical Effects on Photoconduction[J]. J Am Chem Soc, 2012,134(5):2524-2527. doi: 10.1021/ja211334k

    10. [10]

      Silvestri F, Marrocchi A, Seri M. Solution-Processable Low-Molecular Weight Extended Arylacetylenes:Versatile p-Type Semiconductors for Field-Effect Transistors and Bulk Heterojunction Solar Cells[J]. J Am Chem Soc, 2010,132(17):6108-6123. doi: 10.1021/ja910420t

    11. [11]

      Jesus R C, Natsuhiro S, Masashi S. Synthesis of Poly(1-chloro-2-arylacetylene)s with High Cis-content and Examination of Their Absorption/Emission Properties[J]. J Polym Sci Part A:Polym Chem, 2017,55(3):382-388. doi: 10.1002/pola.v55.3

    12. [12]

      Daniel P I, Christian W. Enantioselective Sensing of Amines Based on[1+1] -, [2+2] -, and[1+2] -Condensation with Fluxional Arylacetylene-Derived Dialdehydes[J]. Org Lett, 2011,13(10):2602-2605. doi: 10.1021/ol200574x

    13. [13]

      Li Y H, Zhang G X, Zhang W. Arylacetylene-Substituted Naphthalene Diimides with Dual Functions:Optical Waveguides and n-Type Semiconductors[J]. Chem Asian J, 2014,9(11):3207-3214. doi: 10.1002/asia.201402768

    14. [14]

      Breen C A, Tischler J R, Bulovic V. Highly Efficient Blue Electroluminescence from Poly(phenylene ethynylene) via Energy Transfer from a Hole-Transport Matrix[J]. Adv Mater, 2005,17(16):1981-1985. doi: 10.1002/(ISSN)1521-4095

    15. [15]

      Flamini R, Tomasi I, Marrocchi A. Synthesis and Photobehaviour of Donor-π-Acceptor Conjugated Arylacetylenes Original Research Article[J]. J Photochem Photobiol A, 2011,223(2/3):140-148.  

    16. [16]

      FANG Jingkun, YU Xian, YANG Xin. Synthesis of Diphenylamino-Substituted Arylene-Ethynylenes and Photovoltaic Properties[J]. Chinese J Org Chem, 2012,32(7):1261-1269.  

    17. [17]

      Flatt A K, Yao Y X, Tour J M. Orthogonally Functionalized Oligomers for Controlled Self-Assembly[J]. J Org Chem, 2004,69(5):1752-1755. doi: 10.1021/jo035821b

    18. [18]

      Fasina T M, Collings J C, Burke J M. Synthesis, Optical Properties, Crystal Structures and Phase Behaviour of Symmetric, Conjugated Ethynylarene-based Rigid Rods with Terminal Carboxylate Groups[J]. J Mater Chem, 2005,15(6):690-697. doi: 10.1039/B413514H

    19. [19]

      ZHAO Qiangqin, LIU Meiling, LI Haitao. Synthesis of a Class of Novel Conjugated Oligo-Phenylene-Ethynylenes with Terminal Amine and Their Photoelectricity Property[J]. Chinese J Synth Chem, 2009,17(6):665-669.  

    20. [20]

      Fang J, An D L, Toyaota S. Synthesis and Spectroscopic Study of Phenylene-(poly)-ethynylenes Substituted by Amino or Amino/Cyano Groups at Terminal(s):Electronic Effect of Cyano Group on Charge-transfer Excitation of Acetylenic π-Systems[J]. Tetrahedron, 2010,66(29):5479-5485. doi: 10.1016/j.tet.2010.05.016

    21. [21]

      Hirata Y, Okada T, Nomoto T. Significant Quenching of the Photoinduced Charge Separated State of Aminophenyl(phenyl)acetylene and N, N-Dimethylaminophenyl(phenyl)acetylene in Protic Solvents[J]. J Phys Chem A, 1998,102(33):6585-6589. doi: 10.1021/jp980991r

    22. [22]

      Adam D, Schuhmacher P, Simmerer J. Fast Photoconduction in the Highly Ordered Columnar Phase of a Discotie Liquid Crystal[J]. Adv Mater, 1995,7(16):43-45.  

    23. [23]

      ZHU Fengzhi, YANG Gang, LI Lu. A New EL Device Based on Pt Complex Phosphorescent Materials with Liquid Crystal[J]. J Optoelectron Laser, 2010,21(6):829-832.  

    24. [24]

      GUAN Xiaolin, ZHANG Yang, FAN Hongting. Synthesis and Photoelectric Properties of Novel Liquid Crystalline Compound Bearing Diethynyl and Naphthyl Groups with High Birefringence[J]. Chinese J Appl Chem, 2016,33(5):533-541. doi: 10.11944/j.issn.1000-0518.2016.05.150198 

    25. [25]

      Zhang Z L, Zhang L Y, Shen Z H. Synthesis and Properties of Mesogen-Jacketed Liquid Crystalline Polymers Containing Bistolane Mesogen[J]. J Polym Sci Part A:Polym Chem, 2010,48(21):4627-4639. doi: 10.1002/pola.v48:21

    26. [26]

      Fang J, An D L, Toyaota S. Synthesis and Spectroscopic Study of Diphenylamino-substituted Phenylene-(poly)ethynylenes:Remarkable Effect of Acetylenic Conjugation Modes[J]. Tetrahedron Lett, 2010,51(6):917-920. doi: 10.1016/j.tetlet.2009.12.023

  • 加载中
    1. [1]

      Zehua Zhang Haitao Yu Yanyu Qi . 多重共振TADF分子的设计策略. Acta Physico-Chimica Sinica, 2025, 41(1): 2309042-. doi: 10.3866/PKU.WHXB202309042

    2. [2]

      YanYuan Jia Rong Rong Jie Liu Jing Guo GuoYu Jiang Shuo Guo . Unity is Strength, and Independence Shines: A Science Popularization Experiment on AIE and ACQ Effects. University Chemistry, 2024, 39(9): 349-358. doi: 10.12461/PKU.DXHX202402035

    3. [3]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    4. [4]

      Qin Li Kexin Yang Qinglin Yang Xiangjin Zhu Xiaole Han Tao Huang . Illuminating Chlorophyll: Innovative Chemistry Popularization Experiment. University Chemistry, 2024, 39(9): 359-368. doi: 10.3866/PKU.DXHX202309059

    5. [5]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    6. [6]

      Chen LUQinlong HONGHaixia ZHANGJian ZHANG . Syntheses, structures, and properties of copper-iodine cluster-based boron imidazolate framework materials. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 149-154. doi: 10.11862/CJIC.20240407

    7. [7]

      Zishuo Yi Peng Liu Yan Xu . Fluorescent “Chameleon”: A Popular Science Experiment Based on Dynamic Luminescence. University Chemistry, 2024, 39(9): 304-310. doi: 10.12461/PKU.DXHX202311079

    8. [8]

      Yanglin Jiang Mingqing Chen Min Liang Yige Yao Yan Zhang Peng Wang Jianping Zhang . Experimental and Theoretical Investigations of Solvent Polarity Effect on ESIPT Mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone. Acta Physico-Chimica Sinica, 2025, 41(2): 100012-. doi: 10.3866/PKU.WHXB202309027

    9. [9]

      Shuwen SUNGaofeng WANG . Two cadmium coordination polymers constructed by varying Ⅴ-shaped co-ligands: Syntheses, structures, and fluorescence properties. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 613-620. doi: 10.11862/CJIC.20230368

    10. [10]

      Dongdong YANGJianhua XUEYuanyu YANGMeixia WUYujia BAIZongxuan WANGQi MA . Design and synthesis of two coordination polymers for the rapid detection of ciprofloxacin based on triphenylpolycarboxylic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2466-2474. doi: 10.11862/CJIC.20240266

    11. [11]

      Lin Song Dourong Wang Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107

    12. [12]

      Han ZHANGJianfeng SUNJinsheng LIANG . Hydrothermal synthesis and luminescent properties of broadband near-infrared Na3CrF6 phosphor. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 349-356. doi: 10.11862/CJIC.20240098

    13. [13]

      Xuewei BACheng CHENGHuaikang ZHANGDeqing ZHANGShuhua LI . Preparation and luminescent performance of Sr1-xZrSi2O7xDy3+ phosphor with high thermal stability. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 357-364. doi: 10.11862/CJIC.20240096

    14. [14]

      Yukai Jiang Yihan Wang Yunkai Zhang Yunping Wei Ying Ma Na Du . Characterization and Phase Diagram of Surfactant Lyotropic Liquid Crystal. University Chemistry, 2024, 39(4): 114-118. doi: 10.3866/PKU.DXHX202309033

    15. [15]

      Zhiwen HUANGQi LIUJianping LANG . W/Cu/S cluster-based supramolecular macrocycles and their third-order nonlinear optical responses. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 79-87. doi: 10.11862/CJIC.20240184

    16. [16]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    17. [17]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    18. [18]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

    19. [19]

      Yan ZHAOXiaokang JIANGZhonghui LIJiaxu WANGHengwei ZHOUHai GUO . Preparation and fluorescence properties of Eu3+-doped CaLaGaO4 red-emitting phosphors. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1861-1868. doi: 10.11862/CJIC.20240242

    20. [20]

      Xinyu Liu Weiran Hu Zhengkai Li Wei Ji Xiao Ni . Algin Lab: Surging Luminescent Sea. University Chemistry, 2024, 39(5): 396-404. doi: 10.3866/PKU.DXHX202312021

Metrics
  • PDF Downloads(2)
  • Abstract views(614)
  • HTML views(235)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return