Citation: ZHANG Yao, YING Zhi, WEN Zhenzhong, ZHENG Xiaoyuan. Research Progress of New Methods for Carrying out Bunsen Reaction in Sulfur-Iodine Cycle for Hydrogen Production[J]. Chinese Journal of Applied Chemistry, ;2018, 35(4): 394-400. doi: 10.11944/j.issn.1000-0518.2018.04.170151 shu

Research Progress of New Methods for Carrying out Bunsen Reaction in Sulfur-Iodine Cycle for Hydrogen Production

  • Corresponding author: YING Zhi, zhiying0720@163.com
  • Received Date: 12 May 2017
    Revised Date: 16 June 2017
    Accepted Date: 9 August 2017

    Fund Project: the Natural Science Foundation of Shanghai 16ZR1422900the National Natural Science Foundation of China 51606128the Shanghai Municipal Education Commission ZZslg16001Supported by the National Natural Science Foundation of China(No.51606128), the Natural Science Foundation of Shanghai(No.16ZR1422900, No.17ZR1419500), the Shanghai Municipal Education Commission(No.ZZslg16001)the Natural Science Foundation of Shanghai 17ZR1419500

Figures(2)

  • The sulfur-iodine(S-I) thermochemical water-splitting cycle is one of the high-efficient methods for hydrogen production, which can be carried out at relatively low temperatures. The Bunsen reaction is particularly important as the core step of the cycle. In order to facilitate the effective separation of Bunsen reaction products, i.e., sulfuric acid and hydroiodic acid, new methods for carrying out Bunsen reaction have been studied by many scholars. In this paper, two new Bunsen reaction routes, including Bunsen reaction in non-aqueous solvents and electrochemical Bunsen reaction were reviewed. The separation of reaction products in non-aqueous solvents was discussed.The properties, advantages and disadvantages of various non-aqueous solvents were compared. It is found that the solvents adopted at present have met the requirements for the separation of Bunsen reaction products, and can be used for the Bunsen reaction, but the recovery and reuse of the solvents are difficult. The research status of electrochemical Bunsen reaction, and the comparison between the progress of two typical research teams were also summarized in this work. Most efforts have been made on the fundamental characteristics of the reaction, further attention can be paid to the electrochemical Bunsen reaction mechanism, cell structure design and optimization, and even construction of novel S-I cycle system.
  • 加载中
    1. [1]

      Yuksel Y E, Ozturk M. Thermodynamic and Thermoeconomic Analyses of a Geothermal Energy Based Integrated System for Hydrogen Production[J]. Int J Hydrogen Energy, 2016,42(4):2530-2546.  

    2. [2]

      Salvi B L, Subramanian K A. Sustainable Development of Road Transportation Sector Using Hydrogen Energy System[J]. Renewable Sustainable Energy Rev, 2015,51:1132-1155. doi: 10.1016/j.rser.2015.07.030

    3. [3]

      Nicoletti G, Arcuri N, Nicoletti G. A Technical and Environmental Comparison Between Hydrogen and Some Fossil Fuels[J]. Energy Convers Manage, 2015,89(89):205-213.  

    4. [4]

      Norman J H, Besenbruch G E, Brown L C, et al. Thermochemical Water-splitting Cycle, Bench-scale Investigations, and Process Engineering. Final Report for the Period February 1977-December 31, 1981[R]. General Atomics Report GA-A16713, DOE report DOE/ET/26225-1, 1982.

    5. [5]

      WANG Shujie, WANG Zhihua, ZHU Qiaoqiao. Simulation and Optimization of Hydrogen Iodide Decomposition and Sulfuric Acid Concentration in Sulfur-iodine Thermo-chemical Cycle[J]. Acta Energ Sol Sin, 2014,35(10):1863-1868. doi: 10.3969/j.issn.0254-0096.2014.10.007

    6. [6]

      LIU Jianbo, ZHANG Yanwei, WANG Zhihua. Study of Y and Modified Y-Zeolites Applied in Catalytic Decomposition of Hydrogen Iodide[J]. Acta Energiae Sol Sin, 2014,35(4):726-730.  

    7. [7]

      Sattler C, Roeb M, Agrafiotis C. Solar Hydrogen Production via Sulphur Based Thermochemical Water-splitting[J]. Sol Energy, 2017,156:30-47. doi: 10.1016/j.solener.2017.05.060

    8. [8]

      YING Zhi. Study on the Characteristics of Electrochemical Bunsen Reaction in the Sulfur-Iodine Cycle for Hydrogen Production[D]. Hangzhou: Zhejiang University, 2015(in Chinese).

    9. [9]

      Sakurai M, Nakajima H, Onuki K.. Preliminary Process Analysis for the Closed Cycle Operation of the Iodine-Sulfur Thermochemical Hydrogen Production Process[J]. Int J Hydrogen Energy, 1999,24(7):603-612. doi: 10.1016/S0360-3199(98)00119-0

    10. [10]

      Kim H S, Keum Y S, Kim Y H. Characteristics of Bunsen Reaction Using HIx Solution(HI-I2-H2O) in a Co-current Flow Mode for the Sulfur-Iodine Hydrogen Production Process[J]. Int J Hydrogen Energy, 2016,41(25):10530-10537. doi: 10.1016/j.ijhydene.2016.04.204

    11. [11]

      Guo H F, Zhang P, Bai Y. Continuous Purification of H2SO4 and HI Phases by Packed Column in IS Process[J]. Int J Hydrogen Energy, 2010,35(7):2836-9. doi: 10.1016/j.ijhydene.2009.05.009

    12. [12]

      ZHU Qiaoqiao, ZHANG Yanwei, WANG Zhihua. Experimental Investigation on Effects of Water Content on Separation Characteristics in Bunsen Reaction[J]. Acta Energ Sol Sin, 2014,35(2):360-365.  

    13. [13]

      ZHAO Zenghua, ZHANG Ping, CHEN Songzhe. Corrosion Environments and Corrosion-resistant Materials for Iodine-Sulfur Thermochemical Cycle[J]. Corros Protect, 2013,34(8):712-717.  

    14. [14]

      Beni G D, Pierini G, Spelta B. The Reaction of Sulphur Dioxide Withwater and a Halogen.The Case of Iodine Reaction in Presence of Organic Solvents[J]. Int J Hydrogen Energy, 1979,5:141-149.  

    15. [15]

      Nomura M, Nakao S I, Okuda H. Development of an Electrochemical Cell for Efficient Hydrogen Production Through the IS Process[J]. AlChE J, 2004,50(8):1991-1998. doi: 10.1002/(ISSN)1547-5905

    16. [16]

      Kim H S, Park H K, Kim Y H. Effects of Operating Parameters on the Pressurized Bunsen Reaction for the Integrated Operation of Sulfur-Iodine Hydrogen Production Process[J]. Int J Hydrogen Energy, 2016,41(34):15133-15140. doi: 10.1016/j.ijhydene.2016.07.070

    17. [17]

      Kim H S, Park H K, Kim Y H. A Convenient Method for Phase Separation and Composition Determination of the Bunsen Reaction Products in Sulfur-Iodine Hydrogen Production Process[J]. Int J Hydrogen Energy, 2017,42(7):3955-3962. doi: 10.1016/j.ijhydene.2016.11.033

    18. [18]

      Kim H S, Kim Y H, Han S J. Continuous Bunsen Reaction and Simultaneous Separation Using a Counter-current Flow Reactor for the Sulfur & Ndash; Iodine Hydrogen Production Process[J]. Int J Hydrogen Energy, 2013,38(14):6190-6196. doi: 10.1016/j.ijhydene.2012.12.139

    19. [19]

      Giaconia A, Caputo G, Sau S. Survey of Bunsen Reaction Routes to Improve the Sulfur-Iodine Thermochemical Water-splitting Cycle[J]. Int J Hydrogen Energy, 2009,34(9):4041-4048. doi: 10.1016/j.ijhydene.2008.11.009

    20. [20]

      Taylor M L, Elder R H. Improved Solvation Routes for the Bunsen Reaction in the Sulphur Iodine Thermochemical Cycle:Part Ⅱ-Molecular Solvent Properties[J]. Int J Hydrogen Energy, 2013,38(4):1775-1783. doi: 10.1016/j.ijhydene.2012.10.030

    21. [21]

      Taylor M L, Elder R H. Improved Solvation Routes for the Bunsen Reaction in the Sulphur Iodine Thermochemical Cycle:Part Ⅲ-Bunsen Reaction in Molecular Solvents[J]. Int J Hydrogen Energy, 2013,38(4):1784-1794. doi: 10.1016/j.ijhydene.2012.11.099

    22. [22]

      Taylor M L, Elder R H, Styring P. Improved Solvation Routes for the Bunsen Reaction in the Sulphur Iodine Thermochemical Cycle:Part I-Ionic Liquids[J]. Int J Hydrogen Energy, 2013,38(38):1775-1783.  

    23. [23]

      Barbarossa V, Vanga G, Diamanti M. Chemically Enhanced Separation of H2SO4/HI Mixtures from the Bunsen Reaction in the Sulfur-Iodine Thermochemical Cycle[J]. Ind Eng Chem Res, 2009,48(19):9040-9044. doi: 10.1021/ie9002427

    24. [24]

      Seddon K R. Room-Temperature Ionic Liquids:Neoteric Solvents for Clean Catalysis[J]. Kinet Catal, 1996,37(5):693-697.  

    25. [25]

      Huddleston J G, Visser A E, Reichert W M. Characterization and Comparison of Hydrophilic and Hydrophobic Room Temperature Ionic Liquids Incorporating the Imidazolium Cation[J]. Green Chem, 2001,3(4):156-164. doi: 10.1039/b103275p

    26. [26]

      Dietz M L, Stepinski D C. A Ternary Mechanism for the Facilitated Transfer of Metal Ions into Room-temperature Ionic Liquids(RTILs):Implications for the "Greenness" of RTILs as Extraction Solvents[J]. Green Chem, 2005,7(10):747-750. doi: 10.1039/b508604c

    27. [27]

      Nomura M, Okuda H, Kasahara S. Optimization of the Process Parameters of an Electrochemical Cell in the IS Process[J]. Chem Eng Sci, 2005,60(24):7160-7167. doi: 10.1016/j.ces.2005.07.011

    28. [28]

      Nomura M, Fujiwara S, Ikenoya K. Application of an Electrochemical Membrane Reactor to the Thermochemical Water Splitting IS Process for Hydrogen Production[J]. J Membr Sci, 2004,240(1):221-226.  

    29. [29]

      Immanuel V, Shukla A. Effect of Operating Variables on Performance of Membrane Electrolysis Cell for Carrying Out Bunsen Reaction of I-S Cycle[J]. Int J Hydrogen Energy, 2012,37(6):4829-4842. doi: 10.1016/j.ijhydene.2011.12.102

    30. [30]

      Immanuel V, Gokul K U, Shukla A. Membrane Electrolysis of Bunsen Reaction in the Iodine-Sulphur Process for Hydrogen Production[J]. Int J Hydrogen Energy, 2012,37(4):3595-3601. doi: 10.1016/j.ijhydene.2011.04.156

    31. [31]

      Ying Z, Zhang Y, Zhu Q. Electrochemical Investigation of the Bunsen Reaction in the Sulfur-Iodine Cycle[J]. Int J Hydrogen Energy, 2013,38(34):14391-1401. doi: 10.1016/j.ijhydene.2013.09.016

    32. [32]

      Immanuel V, Parvatalu D, Bhardwaj A. Properties of Nafion 117 in Highly Acidic Environment of Bunsen Reaction of I-S Cycle[J]. J Membr Sci, 2012,409/410(4):137-144.  

    33. [33]

      Zhang Y, Zhi Y, Peng P. Performance of the Electrochemical Bunsen Reaction Using Two Different Proton Exchange Membranes in the Sulfur Iodine Cycle[J]. Ind Eng Chem Res, 2014,53(12):4966-4974. doi: 10.1021/ie404249c

    34. [34]

      Gokul K U, Immanuel V, Sant S. Membrane Electrolysis for Bunsen Reaction of the SI Cycle[J]. J Membr Sci, 2011,380(1):13-20.  

    35. [35]

      Zhang Y, Ying Z, Liu J.. Electrochemical Characterization of Electrodes in the Electrochemical Bunsen Reaction of the Sulfur-Iodine Cycle[J]. Int J Hydrogen Energy, 2014,39(14):7216-7224. doi: 10.1016/j.ijhydene.2014.01.177

    36. [36]

      Ying Z, Zheng X, Cui G. Detailed Kinetic Study of the Electrochemical Bunsen Reaction in the Sulfur-iodine Cycle for Hydrogen Production[J]. Energy Convers Manage, 2016,115:26-31. doi: 10.1016/j.enconman.2016.02.046

    37. [37]

      Ying Z, Zhang Y, Xu S. Equilibrium Potential for the Electrochemical Bunsen Reaction in the Sulfur-iodine Cycle[J]. Int J Hydrogen Energy, 2014,39(33):18727-18733. doi: 10.1016/j.ijhydene.2014.09.039

  • 加载中
    1. [1]

      Xiaogang Liu Mengyu Chen Yanyan Li Xiantao Ma . Experimental Reform in Applied Chemistry for Cultivating Innovative Competence: A Case Study of Catalytic Hydrogen Production from Liquid Formaldehyde Reforming at Room Temperature. University Chemistry, 2025, 40(7): 300-307. doi: 10.12461/PKU.DXHX202408007

    2. [2]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    3. [3]

      Nengmin ZHUWenhao ZHUXiaoyao YINSongzhi ZHENGHao LIZeyuan WANGWenhao WEIXuanheng CHENWeihai SUN . Preparation of high-performance CsPbBr3 perovskite solar cells by the aqueous solution solvent method. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1131-1140. doi: 10.11862/CJIC.20240419

    4. [4]

      Chengshan Yuan Xiaolong Li Xiuping Yang Xiangfeng Shao Zitong Liu Xiaolei Wang Yongwen Shen . Standardized Operational Guidelines for Mixed-Solvent Recrystallization in Organic Chemistry Experiment. University Chemistry, 2025, 40(5): 122-127. doi: 10.12461/PKU.DXHX202504073

    5. [5]

      Yongming Zhu Huili Hu Yuanchun Yu Xudong Li Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086

    6. [6]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    7. [7]

      Qianwen Han Tenglong Zhu Qiuqiu Lü Mahong Yu Qin Zhong . 氢电极支撑可逆固体氧化物电池性能及电化学不对称性优化. Acta Physico-Chimica Sinica, 2025, 41(1): 2309037-. doi: 10.3866/PKU.WHXB202309037

    8. [8]

      Zhongyan Cao Youzhi Xu Menghua Li Xiao Xiao Xianqiang Kong Deyun Qian . Electrochemically Driven Denitrative Borylation and Fluorosulfonylation of Nitroarenes. University Chemistry, 2025, 40(4): 277-281. doi: 10.12461/PKU.DXHX202407017

    9. [9]

      Hongting Yan Aili Feng Rongxiu Zhu Lei Liu Dongju Zhang . Reexamination of the Iodine-Catalyzed Chlorination Reaction of Chlorobenzene Using Computational Chemistry Methods. University Chemistry, 2025, 40(3): 16-22. doi: 10.12461/PKU.DXHX202403010

    10. [10]

      Hong Yan Wenfeng Wang Keyin Ye Yaofeng Yuan . Organic Electrochemistry and Its Integration into Chemistry Teaching. University Chemistry, 2025, 40(5): 301-310. doi: 10.12461/PKU.DXHX202407027

    11. [11]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

    12. [12]

      Shuhui Li Xucen Wang Yingming Pan . Exploring the Role of Electrochemical Technologies in Everyday Life. University Chemistry, 2025, 40(3): 302-307. doi: 10.12461/PKU.DXHX202406059

    13. [13]

      Zihan Lin Wanzhen Lin Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089

    14. [14]

      Ruitong Zhang Zhiqiang Zeng Xiaoguang Zhang . Improvement of Ethyl Acetate Saponification Reaction and Iodine Clock Reaction Experiments. University Chemistry, 2024, 39(8): 197-203. doi: 10.3866/PKU.DXHX202312004

    15. [15]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    16. [16]

      Lianghong Ye Junqing Ni Zhongyi Yan Zhanming Zhang Can Zhu Mo Sun . Chemical Fuel-Driven Non-Equilibrium Color Change. University Chemistry, 2025, 40(3): 349-354. doi: 10.12461/PKU.DXHX202406109

    17. [17]

      Liangzhen Hu Li Ni Ziyi Liu Xiaohui Zhang Bo Qin Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001

    18. [18]

      Cen Zhou Biqiong Hong Yiting Chen . Application of Electrochemical Techniques in Supramolecular Chemistry. University Chemistry, 2025, 40(3): 308-317. doi: 10.12461/PKU.DXHX202406086

    19. [19]

      Renxiu Zhang Xin Zhao Yunfei Zhang . Application of Electrochemical Synthesis in the Teaching of Organic Chemistry. University Chemistry, 2025, 40(4): 174-180. doi: 10.12461/PKU.DXHX202406116

    20. [20]

      Yong Zhou Jia Guo Yun Xiong Luying He Hui Li . Comprehensive Teaching Experiment on Electrochemical Corrosion in Galvanic Cell for Chemical Safety and Environmental Protection Course. University Chemistry, 2024, 39(7): 330-336. doi: 10.3866/PKU.DXHX202310109

Metrics
  • PDF Downloads(0)
  • Abstract views(484)
  • HTML views(79)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return