Citation: LIU Xingyu, HU Zhiming, WU Pengfei, DONG Xichao, GUO Changqing, SU Zhiming, LIU Anhua. Processing and Microwave-absorption Properties of Iron-containing SiC Ceramics[J]. Chinese Journal of Applied Chemistry, ;2018, 35(2): 224-231. doi: 10.11944/j.issn.1000-0518.2018.02.170080 shu

Processing and Microwave-absorption Properties of Iron-containing SiC Ceramics

  • Corresponding author: LIU Anhua, ahliu@xmu.edu.com
  • Received Date: 23 March 2017
    Revised Date: 10 April 2017
    Accepted Date: 3 May 2017

    Fund Project: Supported by the National Natural Science Foundation of China(No.51603175), the Fundamental Research Funds for the Central Universities(No.20720150082)the Fundamental Research Funds for the Central Universities 20720150082the National Natural Science Foundation of China 51603175

Figures(7)

  • Different mass fraction of iron-containing silicon carbide(Fe/SiC) ceramics was successfully prepared by firstly synthesizing iron(Fe)-containing precursor via blending Fe colloids formed by the reaction of liquid polycarbosilane(PCS) and carbonyl iron with solid PCS and then the cross-linking and pyrolysis. The effects of the introduction of Fe on the component, structure, and magnetic and dielectric properties were systematically studied. When the mass fraction of iron is less than 8.94%, Fe element can significantly promote the decomposition of SiCxOy and generate β-SiC, and the crystallization peak of β-SiC is sharper with increased Fe. But when the Fe mass fraction increases to 11.78%, the main product is Fe3Si; Fe-SiC ceramics are all ferromagnetic, and their saturation magnetization increases exponentially with the increase of iron. Fe/SiC ceramic with 4.19% Fe has a minimum -9.4 dB reflection loss at 12.4 GHz. The bandwidths of less than -5 dB for Fe/SiC cermic with 4.19% and 8.94% Fe are 2.4 GHz and 3.7 GHz, respectively, which can be used as good microwave-absorption materials.
  • 加载中
    1. [1]

      YAO Jun, WANG Xiaoqiang. Preparation and Research Progress of Absorbing Materials in Aerospace[J]. Contemp Chem Ind, 2012,2:169-172. doi: 10.3969/j.issn.1671-0460.2012.02.019

    2. [2]

      LIU Danli, LIU Ping'an, YANG Qingsong. Research Status and Prospect of Wave Absorbing Materials[J]. Mater Rev, 2013,17:74-78.  

    3. [3]

      Gain A K, Han J K, Jang H D. Fabrication of Continuously Porous SiC-Si3N4 Composite Using SiC Powder by Extrusion Process[J]. J Eur Ceram Soc, 2006,26(13):2467-2473. doi: 10.1016/j.jeurceramsoc.2005.06.038

    4. [4]

      Zheng G P, Yin X W, Wang J. Complex Permittivity and Microwave Absorbing Property of Si3N4 SiC Composite Ceramic[J]. JMST, 2012,28(8):745-750.  

    5. [5]

      Liu Y, Luo F, Zhou W C. Dielectric and Microwave Absorption Properties of Ti3SiC2 Powders[J]. J Alloys Compd, 2013,576:43-47. doi: 10.1016/j.jallcom.2013.04.137

    6. [6]

      Heuguet R, Marinel S, Thuault A. Effects of the Susceptor Dielectric Properties on the Microwave Sintering of Alumina[J]. J Am Ceram Soc, 2013,96(12):3728-3736. doi: 10.1111/jace.12623

    7. [7]

      Yin X W, Xue Y Y, Zhang L T. Dielectric, Electromagnetic Absorption and Interference Shielding Properties of Porous Yttria-Stabilized Zirconia/Silicon Carbide Composites[J]. Ceram Int, 2012,38(3):2421-2427. doi: 10.1016/j.ceramint.2011.11.008

    8. [8]

      Seyferth D, Lang H, Sobon C A. Chemical Modification of Preceramic Polymers:Their Reactions with Transition Metal Complexes and Transition Metal Powders[J]. J Inorg Organomet Polym, 1992,2(1):59-77. doi: 10.1007/BF00696536

    9. [9]

      Su X L, Jia Y, Wang J B. Preparation and Microwave Absorption Properties of Fe-Doped SiC Powder Obtained by Combustion Synthesis[J]. Ceram Int, 2013,39(4):3651-3656. doi: 10.1016/j.ceramint.2012.10.194

    10. [10]

      Su X L, Zhou W C, Xu J. Preparation and Dielectric Property of Al and N Co-Doped SiC Powder by Combustion Synthesis[J]. J Am Ceram Soc, 2012,95(4):1388-1393. doi: 10.1111/j.1551-2916.2011.04996.x

    11. [11]

      Yuan J, Yang H J, Hou Z L. Ni-Decorated SiC Powders:Enhanced High-Temperature Dielectric Properties and Microwave Absorption Performance[J]. Powder Technol, 2013,237:309-313. doi: 10.1016/j.powtec.2012.12.020

    12. [12]

      Li D, Jin H B, Cao M S. Production of Ni-Doped SiC Nanopowders and Their Dielectric Properties[J]. J Am Ceram Soc, 2011,94(5):1523-1527. doi: 10.1111/jace.2011.94.issue-5

    13. [13]

      LUO Fa, ZHOU Wancheng, ZHAO Donglin. The Electric and Absorbing Wave Properties of Fibers in Structural Radar Absorbing Materials[J]. J Mater Eng, 2000,2:37-40.  

    14. [14]

      Yang H J, Cao M S, Li Y. Enhanced Dielectric Properties and Excellent Microwave Absorption of SiC Powders Driven with NiO Nanorings[J]. Adv Opt Mater, 2014,2(3):214-219. doi: 10.1002/adom.v2.3

    15. [15]

      Yang H J, Cao W Q, Zhang D Q. NiO Hierarchical Nanorings on SiC:Enhancing Relaxation to Tune Microwave Absorption at Elevated Temperature[J]. ACS Appl Mater Interfaces, 2015,7(13):7073-7077. doi: 10.1021/acsami.5b01122

    16. [16]

      Yu Z J, Li S, Zhang P. Polymer-Derived Mesoporous Ni/SiOC(H) Ceramic Nanocomposites for Efficient Removal of Acid Fuchsin[J]. Ceram Int, 2016,43(5):4520-4526.  

    17. [17]

      Yu Z J, Zhang P, Feng Y. Template-Free Synthesis of Porous Fe3O4/SiOC(H) Nanocomposites with Enhanced Catalytic Activity[J]. J Am Ceram Soc, 2016,99(8):2615-2624. doi: 10.1111/jace.14305

    18. [18]

      Yu Z J, Min H, Zhan J Y. Preparation and Dielectric Properties of Polymer-Derived SiCTi Ceramics[J]. Ceram Int, 2013,39(4):3999-4007. doi: 10.1016/j.ceramint.2012.10.250

    19. [19]

      Yu Z J, Yang L, Zhan J Y. Preparation, Cross-Linking and Ceramization of AHPCS/Cp2ZrCl2 Hybrid Precursors for SiC/ZrC/C Composites[J]. J Eur Ceram Soc, 2012,32(6):1291-1298. doi: 10.1016/j.jeurceramsoc.2011.12.015

    20. [20]

      Yu Z J, Huang M H, Fang Y H. Modification of a Liquid Polycarbosilane with 9-BBN as a High-Ceramic-Yield Precursor for SiC[J]. React Funct Polym, 2010,70(6):334-339. doi: 10.1016/j.reactfunctpolym.2010.02.007

    21. [21]

      Yin X W, Li X M, Zhang L T. Microstructure and Mechanical Properties of Lu2O3-Doped Porous Silicon Nitride Ceramics Using Phenolic Resin as Pore-Forming Agent[J]. Int J Appl Ceram Technol, 2010,7(3):391-398.  

    22. [22]

      Kong L, Yin X W, Zhang L T. Effect of Aluminum Doping on Microwave Absorption Properties of ZnO/ZrSiO4 Composite Ceramics[J]. J Am Ceram Soc, 2012,95(10):3158-3165. doi: 10.1111/jace.2012.95.issue-10

    23. [23]

      Chen X J, Su Z M, Zhang L. Iron Nanoparticle-Containing Silicon Carbide Fibers Prepared by Pyrolysis of Fe(CO)5-Doped Polycarbosilane Fibers[J]. J Am Ceram Soc, 2010,93(1):89-95. doi: 10.1111/jace.2010.93.issue-1

    24. [24]

      Liu A H, Chen J M, Ding S N. Processing and Characterization of Cobalt Silicide Nanoparticle-Containing Silicon Carbide Fibers Through a Colloidal Method and Their Underlying Mechanism[J]. J Mater Chem C, 2014,2(25):4980-4988. doi: 10.1039/C4TC00315B

    25. [25]

      CAI Zhihui. Mechanism of Formation of Near-Stoichiometric SiC Fibers[D]. Xiamen: Xiamen University, 2010(in Chinese). 

    26. [26]

      LIU Ling, CHEN Jianming, DING Shaonan. The Influence of Oxygen Content on the Structure and Properties of Co-SiC Fibers[J]. J Funct Mater, 2014,45(S2):37-40.  

    27. [27]

      Berger A, Pippel E, Woltersdorf J. Nanoprocesses in Polymer-Derived Si—O—C Ceramics:Electronmicroscopic Observations and Reaction Kinetics[J]. Phys Status Solidi A, 2005,202(12):2277-2286. doi: 10.1002/(ISSN)1521-396X

    28. [28]

      Tang X Y, Chen L F, Cheng X. Temperature-Dependent Microstructure and Phase Evolution of Iron-Containing SiC Fibers[J]. Ceram Int, 2014,40(9):14223-14227. doi: 10.1016/j.ceramint.2014.06.011

    29. [29]

      Aphesteguy J C, Damiani A, DiGiovanni D. Microwave-Absorbing Characteristics of Epoxy Resin Composites Containing Nanoparticles of NiZn-and NiCuZn-Ferrites[J]. Phys B, 2009,404(18):2713-2716. doi: 10.1016/j.physb.2009.06.065

    30. [30]

      Giannakopoulou T, Kompotiatis L, Kontogeorgakos A. Microwave Behavior of Ferrites Prepared via Sol Gel Method[J]. J Magn Magn Mater, 2002,246(3):360-365. doi: 10.1016/S0304-8853(02)00106-3

    31. [31]

      Li Q, Yin X W, Duan W Y. Electrical, Dielectric and Microwave-Absorption Properties of Polymer Derived SiC Ceramics in X Band[J]. J Alloys Compd, 2013,565:66-72. doi: 10.1016/j.jallcom.2013.02.176

    32. [32]

      Wang C, Han X J, Xu P. Controlled Synthesis of Hierarchical Nickel and Morphology-Dependent Electromagnetic Properties[J]. J Phys Chem C, 2010,114(7):3196-3203. doi: 10.1021/jp908839r

    33. [33]

      Ohlan A, Singh K, Chandra A. Microwave Absorption Behavior of Core-Shell Structured Poly(3, 4-ethylenedioxy thiophene)-Barium Ferrite Nanocomposites[J]. ACS Appl Mater Interfaces, 2010,2(3):927-933. doi: 10.1021/am900893d

  • 加载中
    1. [1]

      Huimin LiuKezhi LiXin ZhangXuemin YinQiangang FuHejun Li . SiC Nanomaterials and Their Derived Carbons for High-Performance Supercapacitors. Acta Physico-Chimica Sinica, 2024, 40(2): 2304026-0. doi: 10.3866/PKU.WHXB202304026

    2. [2]

      Min LIXianfeng MENG . Preparation and microwave absorption properties of ZIF-67 derived Co@C/MoS2 nanocomposites. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1932-1942. doi: 10.11862/CJIC.20240065

    3. [3]

      Ruifeng CHENChao XUJianting JIANGTianshe YANG . Gold nanorod/zinc oxide/mesoporous silica nanoplatform: A triple-modal platform for synergistic anticancer therapy. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2272-2282. doi: 10.11862/CJIC.20250117

    4. [4]

      Mingxin LULiyang ZHOUXiaoyu XUXiaoying FENGHui WANGBin YANJie XUChao CHENHui MEIFeng GAO . Preparation of La-doped lead-based piezoelectric ceramics with both high electrical strain and Curie temperature. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 329-338. doi: 10.11862/CJIC.20240206

    5. [5]

      Haotong MaMingyu HengYang XuWei BiYingchun MiaoShuning Xiao . Synergistic carbon doping and Cu loading on boron nitride via microwave synthesis for enhanced atmospheric CO2 photoreduction. Acta Physico-Chimica Sinica, 2025, 41(11): 100132-0. doi: 10.1016/j.actphy.2025.100132

    6. [6]

      Jiahui CHENTingting ZHENGXiuyun ZHANGWei LÜ . Research progress of near-infrared absorption inorganic nanomaterials in photothermal and photodynamic therapy of tumors. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2396-2414. doi: 10.11862/CJIC.20240106

    7. [7]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

    8. [8]

      Baohua LÜYuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105

    9. [9]

      Yongqing XuYuyao YangMengna WuXiaoxiao YangXuan BieShiyu ZhangQinghai LiYanguo ZhangChenwei ZhangRobert E. PrzekopBogna SztorchDariusz BrzakalskiHui Zhou . Review on Using Molybdenum Carbides for the Thermal Catalysis of CO2 Hydrogenation to Produce High-Value-Added Chemicals and Fuels. Acta Physico-Chimica Sinica, 2024, 40(4): 2304003-0. doi: 10.3866/PKU.WHXB202304003

    10. [10]

      Yuena Yu Fang Fang . Microwave-Assisted Synthesis of Safinamide Methanesulfonate. University Chemistry, 2024, 39(11): 210-216. doi: 10.3866/PKU.DXHX202401076

    11. [11]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    12. [12]

      Fengying ZhangYanglin MeiYuman JiangShenshen ZhengKaibo ZhengYing Zhou . Research progress of transient absorption spectroscopy in solar energy conversion and utilization. Acta Physico-Chimica Sinica, 2025, 41(9): 100118-0. doi: 10.1016/j.actphy.2025.100118

    13. [13]

      Kai PENGXinyi ZHAOZixi CHENXuhai ZHANGYuqiao ZENGJianqing JIANG . Progress in the application of high-entropy alloys and high-entropy ceramics in water electrolysis. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1257-1275. doi: 10.11862/CJIC.20240454

    14. [14]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    15. [15]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    16. [16]

      Zehao ZhangZheng WangHaibo Li . Preparation of 2D V2O3@Pourous Carbon Nanosheets Derived from V2CFx MXene for Capacitive Desalination. Acta Physico-Chimica Sinica, 2024, 40(8): 2308020-0. doi: 10.3866/PKU.WHXB202308020

    17. [17]

      Kexin YanZhaoqi YeLingtao KongHe LiXue YangYahong ZhangHongbin ZhangYi Tang . Seed-Induced Synthesis of Disc-Cluster Zeolite L Mesocrystals with Ultrashort c-Axis: Morphology Control, Decoupled Mechanism, and Enhanced Adsorption. Acta Physico-Chimica Sinica, 2024, 40(9): 2308019-0. doi: 10.3866/PKU.WHXB202308019

    18. [18]

      Junjian WangQingquan YuShunyao LiuYuke ChenXiaoyu LiuGuodong LiXiaoyan LiuHong LiuWeijia Zhou . Laser-Induced Carbonization of Hydroxyapatite Sandwich Paper for Inkless Printing. Acta Physico-Chimica Sinica, 2024, 40(4): 2304024-0. doi: 10.3866/PKU.WHXB202304024

    19. [19]

      Mengyao Shi Kangle Su Qingming Lu Bin Zhang Xiaowen Xu . Determination of Potassium Content in Tobacco Stem Ash by Flame Atomic Absorption Spectroscopy. University Chemistry, 2024, 39(10): 255-260. doi: 10.12461/PKU.DXHX202404105

    20. [20]

      Shicheng Yan . Experimental Teaching Design for the Integration of Scientific Research and Teaching: A Case Study on Organic Electrooxidation. University Chemistry, 2024, 39(11): 350-358. doi: 10.12461/PKU.DXHX202408036

Metrics
  • PDF Downloads(8)
  • Abstract views(2245)
  • HTML views(1070)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return