Citation: WANG Zhaoyun, ZHANG Ping, ZHANG Min, JIAO Lijuan. Synthesis and Properties of Quinoline Substituted Boron Dipyrromethene Based Ferric Ion Probe[J]. Chinese Journal of Applied Chemistry, ;2018, 35(1): 46-52. doi: 10.11944/j.issn.1000-0518.2018.01.170340 shu

Synthesis and Properties of Quinoline Substituted Boron Dipyrromethene Based Ferric Ion Probe

  • Corresponding author: JIAO Lijuan, jiao421@ahnu.edu.cn
  • Received Date: 18 September 2017
    Revised Date: 3 November 2017
    Accepted Date: 24 November 2017

    Fund Project: Supported by the National Natural Science Foundation of China(No.21372011), the Natural Science Foundation of Anhui Province(No.1508085J07)the Natural Science Foundation of Anhui Province 1508085J07the National Natural Science Foundation of China 21372011

Figures(10)

  • A quinoline substituted boron dipyrromethene(BODIPY) based probe(BHQ) was synthesized and characterized by nuclear magnetic resonance spectroscopy(NMR) and high resolution mass spectrometer(HRMS). The probe shows significant enhancement of fluorescence intensity in the presence of Fe3+ in aqueous solution. The probe exhibits fast response, high sensitivity and high selectivity toward Fe3+, while other common metal ions do not show significant interference. The binding between the probe and Fe3+ has been found to be in 1:1 mole ratio based on Job's plot. This result suggests that the probe BHQ has potential application in the determination of Fe3+ ions.
  • 加载中
    1. [1]

      Zhu H, Fan J, Peng X. Fluorescent Probes for Sensing and Imaging Within Specific Cellular Organelles[J]. Acc Chem Res, 2016,49(10):2115-2126. doi: 10.1021/acs.accounts.6b00292

    2. [2]

      CHEN Hongrong, WU Ya'nan, CHEN Shiyan. "Naked Eye" and Fluorescence "Turn On" Recognition of Al3+ Based on 2-Hydroxy-Naphthalene-Formaldehyde Benzoyl-Hydrazone Derivatives[J]. Chinese J Appl Chem, 2016,33(5):559-605.  

    3. [3]

      Ow H, Larson D R, Srivastava M. Bright and Stable Core-Shell Fluorescent Silica Nanoparticles[J]. Nano Lett, 2005,5(1):113-117. doi: 10.1021/nl0482478

    4. [4]

      Gao H F, Krzysztof K. Synthesis of Star Polymers by a Combination of ATRP and the Click' Coupling Method[J]. Macromolecules, 2006,39(15):4960-4965. doi: 10.1021/ma060926c

    5. [5]

      Nathaniel C L, Svetlana V P, Christian B. Squaramide Hydroxamate Based Chemidosimeter Responding to Iron(Ⅲ) with a Fluorescence Intensity Increase[J]. Inorg Chem, 2009,48(3):1173-1182. doi: 10.1021/ic801322x

    6. [6]

      Emerit J, Beaumont C T F. Iron Metabolism, Free Radicals, and Oxidative Injury[J]. Biomed Pharmacother, 2001,55(6):333-339. doi: 10.1016/S0753-3322(01)00068-3

    7. [7]

      Papanikolaou G, Pantopoulos K. Ironmetabolism and Toxicity[J]. Toxicol Appl Pharmacol, 2005,202(2):199-211. doi: 10.1016/j.taap.2004.06.021

    8. [8]

      Tesfaldet Z O, van Staden J F, Stefan R I. Sequential Injection Spectrophotometric Determination of Iron as Fe(Ⅱ) in Multi-Vitamin Preparations Using 1, 10-Phenanthroline as Complexing Agent[J]. Talanta, 2004,64(5):1189-1195. doi: 10.1016/j.talanta.2004.02.044

    9. [9]

      Elrod V A, Johnson K S, Coale K H. Determination of Subnanomolar Levels of Iron(Ⅱ) and Total Dissolved Iron in Seawater by Flow Injection and Analysis with Chemiluminescence Detection[J]. Anal Chem, 1991,63(9):893-898. doi: 10.1021/ac00009a011

    10. [10]

      Ohashi A, Ito H, Kanai C. Cloud Point Extraction of Iron(Ⅲ) and Vanadium(Ⅴ) Using 8-Quinolinol Derivatives and Triton X-100 and Determination of 10-7 mol·dm-3 Level Iron(Ⅲ) in Riverine Water Reference by a Graphite Furnace Atomic Absorption Spectroscopy[J]. Talanta, 2005,65(2):525-530. doi: 10.1016/j.talanta.2004.07.018

    11. [11]

      Suban K S, Darshna S, Rati K B. Iron(Ⅲ) Selective Molecular and Supramolecular Fluorescent Probes[J]. Chem Soc Rev, 2012,41(21):7195-7227. doi: 10.1039/c2cs35152h

    12. [12]

      Narendra R C, Sathiah T, Asit B M. A Highly Selective Efficient Single Molecular FRET Based Sensor for Ratiometric Detection of Fe3+ Ions[J]. Analyst, 2013,138(5):1334-1337. doi: 10.1039/c3an36577h

    13. [13]

      Zhou X, Zhou J. Improving the Signal Sensitivity and Photostability of DNA Hybridizations on Microarrays by Using Dye-Doped Core-Shell Silica[J]. Anal Chem, 2004,76(18):5302-5312. doi: 10.1021/ac049472c

    14. [14]

      Loudet A, Burgess K. BODIPY Dyes and Their Derivatives:Syntheses and Spectroscopic Properties[J]. Chem Rev, 2007,39(7):4891-4932.  

    15. [15]

      Bagwe R P, Yang C, Hilliard L R. Optimization of Dye-Doped Silica Nanoparticles Prepared Using a Reverse Microemulsion Method[J]. Langmuir, 2004,20(19):8336-8342. doi: 10.1021/la049137j

    16. [16]

      Montalti M, Prodi L, Zaccheroni N. Luminescent Anion Sensor Based on a Europium Hybrid Complex[J]. J Am Chem Soc, 2001,123(50):12694-12695. doi: 10.1021/ja0118688

    17. [17]

      Hao E, Meng T, Zhang M. Solvent Dependent Fluorescent Properties of a 1, 2, 3-Triazole Linked 8-Hydroxyquinoline Chemosensor:Tunable Detection from Zinc(Ⅱ) to Iron(Ⅲ) in the CH3CN/H2O System[J]. J Phys Chem A, 2011,115(29):8234-8241. doi: 10.1021/jp202700s

    18. [18]

      Zhang M, Hao E H, Xu Y J. One-pot Efficient Synthesis of Pyrrolyl BODIPY Dyes from Pyrrole and Acyl Chloride[J]. RSC Adv, 2012,2(30):11215-11218. doi: 10.1039/c2ra22203e

    19. [19]

      ZHANG Ping, MENG Ting, HAO Erhong. Synthesis and Optical Properties of a Novel Quinoline Derivative as a High Seclective Fluorosensor for Fe(Ⅲ)[J]. J Anhui Norm Univ, 2015,38(1):8-13.  

    20. [20]

      Groves B R, Crawford S M, Lundrigan T. Synthesis and Characterisation of the Unsubstituled Dipyrrin and 4, 4-Dichloro-4-Bora-3a, 4a-Diaza-S-Indacene:Improved Synthesis and Functionalisation of the Simplest BODIPY Framework[J]. Chem Commun, 2013,49(8):816-818. doi: 10.1039/C2CC37480C

    21. [21]

      Zachary D H, Patrick M. Novel Approach to Job's Method[J]. J Chem Edu, 1986,63(2):162-167. doi: 10.1021/ed063p162

    22. [22]

      Wang Z, Wang H, Meng T. Synthetically Simple, Click-Generated Quinoline-Based Fe3+ Sensors[J]. Methods Appl Fluores, 2017,5(2)024015. doi: 10.1088/2050-6120/aa7170

  • 加载中
    1. [1]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    2. [2]

      Yanxi LIUMengjia XUHaonan CHENQuan LIUYuming ZHANG . A fluorescent-colorimetric probe for peroxynitrite-anion-imaging in living cells. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1112-1122. doi: 10.11862/CJIC.20240423

    3. [3]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    4. [4]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    5. [5]

      Yu SUXinlian FANYao YINLin WANG . From synthesis to application: Development and prospects of InP quantum dots. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2105-2123. doi: 10.11862/CJIC.20240126

    6. [6]

      Jianfeng Yan Yating Xiao Xin Zuo Caixia Lin Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005

    7. [7]

      Jia-He Li Yu-Ze Liu Jia-Hui Ma Qing-Xiao Tong Jian-Ji Zhong Jing-Xin Jian . 洛芬碱衍生物的合成、化学发光与重金属离子检测. University Chemistry, 2025, 40(6): 230-237. doi: 10.12461/PKU.DXHX202407080

    8. [8]

      Benhua Wang Chaoyi Yao Yiming Li Qing Liu Minhuan Lan Guipeng Yu Yiming Luo Xiangzhi Song . 一种基于香豆素氟离子荧光探针的合成、表征及性能测试——“科研反哺教学”在有机化学综合实验教学中的探索与实践. University Chemistry, 2025, 40(6): 201-209. doi: 10.12461/PKU.DXHX202408070

    9. [9]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    10. [10]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    11. [11]

      Yikai Wang Xiaolin Jiang Haoming Song Nan Wei Yifan Wang Xinjun Xu Cuihong Li Hao Lu Yahui Liu Zhishan Bo . 氰基修饰的苝二酰亚胺衍生物作为膜厚不敏感型阴极界面材料用于高效有机太阳能电池. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-. doi: 10.3866/PKU.WHXB202406007

    12. [12]

      Yuyao Wang Zhitao Cao Zeyu Du Xinxin Cao Shuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-. doi: 10.3866/PKU.WHXB202406014

    13. [13]

      Pingping LUShuguang ZHANGPeipei ZHANGAiyun NI . Preparation of zinc sulfate open frameworks based probe materials and detection of Pb2+ and Fe3+ ions. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 959-968. doi: 10.11862/CJIC.20240411

    14. [14]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    15. [15]

      Siran Wang Yinuo Wang Yilong Zhao Dazhen Xu . Advances in the Application and Preparation of Rhodanine and Its Derivatives. University Chemistry, 2025, 40(5): 318-327. doi: 10.12461/PKU.DXHX202407033

    16. [16]

      Tingting Yu Si Chen Lianglong Sun Tongtong Shi Kai Sun Xin Wang . Comprehensive Experimental Design for the Photochemical Synthesis, Analysis, and Characterization of Difluoropyrroles. University Chemistry, 2024, 39(11): 196-203. doi: 10.3866/PKU.DXHX202401022

    17. [17]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    18. [18]

      Yuan ZHUXiaoda ZHANGShasha WANGPeng WEITao YI . Conditionally restricted fluorescent probe for Fe3+ and Cu2+ based on the naphthalimide structure. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 183-192. doi: 10.11862/CJIC.20240232

    19. [19]

      Shuwen SUNGaofeng WANG . Design and synthesis of a Zn(Ⅱ)-based coordination polymer as a fluorescent probe for trace monitoring 2, 4, 6-trinitrophenol. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 753-760. doi: 10.11862/CJIC.20240399

    20. [20]

      Zhifeng CAIYing WUYanan LIGuiyu MENGTianyu MIAOYihao ZHANG . Effective detection of malachite green by folic acid stabilized silver nanoclusters. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 983-993. doi: 10.11862/CJIC.20240394

Metrics
  • PDF Downloads(4)
  • Abstract views(2205)
  • HTML views(1098)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return