Citation: WANG Cui, ZHANG Feiyun, LYU Rongwen, ZHANG Shufen. Gold Nanopaticle Surface Energy Transfer and Its Application for Thiols Detection[J]. Chinese Journal of Applied Chemistry, ;2018, 35(1): 60-67. doi: 10.11944/j.issn.1000-0518.2018.01.170048 shu

Gold Nanopaticle Surface Energy Transfer and Its Application for Thiols Detection

  • Corresponding author: LYU Rongwen, lurw@dlut.edu.cn
  • Received Date: 28 February 2017
    Revised Date: 12 April 2017
    Accepted Date: 31 May 2017

Figures(11)

  • The fluorescence of Rhodamine B was quenched due to the surface energy transfer from Rhodamine B to silica supported gold nanoparticle surface. The Stern-Volmer quenching constant of the gold nanoparticles was 4.3×103 L/mol in this system. While, the fluorescence of Rhodamine B recovered after the addition of thiols due to the strong affinity of thiol to gold nanoparticles which obstructed the energy transfer between Rhodamine B and gold nanoparticles. As the unique response of Rhodamine B-Au-SiO2 system to thiols, it provides a simple analytical method for the detection of thiols. Moreover, Au-SiO2 becomes a recyclable probe because of the stabilization of silica support.
  • 加载中
    1. [1]

      Darbha G K, Ray A, Ray P C. Gold Nanoparticle-Based Miniaturized Nanomaterial Surface Energy Transfer Probe for Rapid and Ultrasensitive Detection of Mercury in Soil, Water, and Fish[J]. ACS Nano, 2007,1(3):208-214. doi: 10.1021/nn7001954

    2. [2]

      Prigogine I. Molecular Fluorescence and Energy Transfer near Interfaces[M]. Hoboken NJ:John Wiley & Sons Inc, 2007.

    3. [3]

      Yun C S, Javier A, Jennings T. Nanometal Surface Energy Transfer in Optical Rulers, Breaking the FRET Barrier[J]. J Am Chem Soc, 2005,127(9):3115-3119. doi: 10.1021/ja043940i

    4. [4]

      Jennings T L, Singh M P, Strouse G F. Fluorescent Lifetime Quenching near D=1.5 nM Gold Nanoparticles:Probing NSET Validity[J]. J Am Chem Soc, 2006,128(16):5462-5467. doi: 10.1021/ja0583665

    5. [5]

      Yamazoe S, Koyasu K, Tsukuda T. Nonscalable Oxidation Catalysis of Gold Clusters[J]. Acc Chem Res, 2014,47(3):816-824. doi: 10.1021/ar400209a

    6. [6]

      Gao F, Ye Q, Cui P. Selective "Turn-on" Fluorescent Sensing for Biothiols Based on Fluorescence Resonance Energy Transfer Between Acridine Orange and Gold Nanoparticles[J]. Anal Methods, 2011,3(5):1180-1185. doi: 10.1039/c1ay05073g

    7. [7]

      Huang C C, Chang H T. Selective Gold-Nanoparticle-Based "Turn-on" Fluorescent Sensors for Detection of Mercury(Ⅱ) in Aqueous Solution[J]. Anal Chem, 2006,78(24):8332-8338. doi: 10.1021/ac061487i

    8. [8]

      Shang L, Qin C, Wang T. Fluorescent Conjugated Polymer-Stabilized Gold Nanoparticles for Sensitive and Selective Detection of Cysteine[J]. J Phys Chem C, 2007,111(36):13414-13417. doi: 10.1021/jp073913p

    9. [9]

      He X, Liu H, Li Y. Gold Nanoparticle-Based Fluorometric and Colorimetric Sensing of Copper(Ⅱ) Ions[J]. Adv Mater, 2005,17(23):2811-2815. doi: 10.1002/(ISSN)1521-4095

    10. [10]

      Bu D, Zhuang H, Yang G. An Immunosensor Designed for Polybrominated Biphenyl Detection Based on Fluorescence Resonance Energy Transfer(FRET) Between Carbon Dots and Gold Nanoparticles[J]. Sens Actuators B, 2014,195:540-548. doi: 10.1016/j.snb.2014.01.079

    11. [11]

      LIU Chun, HUANG Chengzhi. Detection of Lead Ions in Water Based on Surface Energy Transfer Between Gold Nanoparticles and Fluorescenct Dyes[J]. Chinese J Anal Chem, 2014(8):1196-1199.  

    12. [12]

      Isokawa M, Kanamori T, Funatsu T. Analytical Methods Involving Separation Techniques for Determination of Low-Molecular-Weight Biothiols in Human Plasma and Blood[J]. J Chromatogr B Anal Technol Biomed Life Sci, 2014,964:103-115. doi: 10.1016/j.jchromb.2013.12.041

    13. [13]

      Dominy J E, Stipanuk M H. New Roles for Cysteine and Transsulfuration Enzymes:Production of H2S, a Neuromodulator and Smooth Muscle Relaxant[J]. Nutr Rev, 2004,62(9):348-353.  

    14. [14]

      Wang W, Li L, Liu S. Determination of Physiological Thiols by Electrochemical Detection with Piazselenole and Its Application in Rat Breast Cancer Cells 4T-1[J]. J Am Chem Soc, 2008,130(33):10846-10847. doi: 10.1021/ja802273p

    15. [15]

      Manibalan K, Chen S M, Mani V. A Sensitive Ratiometric Long-Wavelength Fluorescent Probe for Selective Determination of Cysteine/Homocysteine[J]. J Fluoresc, 2016,26(4):1489-1495. doi: 10.1007/s10895-016-1844-x

    16. [16]

      Uzu T, Sasaki S. A New Copper(Ⅱ) Complex as an Efficient Catalyst of Luminol Chemiluminescence[J]. Org Lett, 2007,9(21):4383-4386. doi: 10.1021/ol702002e

    17. [17]

      White R J, Luque R, Budarin V L. Supported Metal Nanoparticles on Porous Materials. Methods and Applications[J]. Chem Soc Rev, 2009,38(2):481-494. doi: 10.1039/B802654H

    18. [18]

      Newton M A. Dynamic Adsorbate/Reaction Induced Structural Change of Supported Metal Nanoparticles:Heterogeneous Catalysis and Beyond[J]. Chem Soc Rev, 2008,37(12):2644-2657. doi: 10.1039/b707746g

    19. [19]

      Turner M, Golovko V B, Vaughan O P. Selective Oxidation with Dioxygen by Gold Nanoparticle Catalysts Derived from 55-Atom Clusters[J]. Nature, 2008,454(7207):981-983. doi: 10.1038/nature07194

    20. [20]

      Li W, Wang A, Yang X. Au/SiO2 as a Highly Active Catalyst for the Selective Oxidation of Silanes to Silanols[J]. Chem Commun, 2012,48(73):9183-9185. doi: 10.1039/c2cc33949h

    21. [21]

      Caltagirone C, Bettoschi A, Garau A. Silica-Based Nanoparticles:A Versatile Tool for the Development of Efficient Imaging Agents[J]. Chem Soc Rev, 2015,44(14):4645-4671. doi: 10.1039/C4CS00270A

    22. [22]

      Coasne B, Galarneau A, Pellenq R J. Adsorption, Intrusion and Freezing in Porous Silica:The View from the Nanoscale[J]. Chem Soc Rev, 2013,42(9):4141-4171. doi: 10.1039/c2cs35384a

    23. [23]

      Rimola A, Costa D, Sodupe M. Silica Surface Features and Their Role in the Adsorption of Biomolecules:Computational Modeling and Experiments[J]. Chem Rev, 2013,113(6):4216-4313. doi: 10.1021/cr3003054

    24. [24]

      Wang C, Lin X, Ge Y. Silica-Supported Ultra Small Gold Nanoparticles as Nanoreactors for the Etherification of Silanes[J]. RSC Adv, 2016,6(104):102102-102108. doi: 10.1039/C6RA22359A

    25. [25]

      Griffin J, Singh A K, Senapati D. Size-and Distance-Dependent Nanoparticle Surface-Energy Transfer(NSET) Method for Selective Sensing of Hepatitis C Virus RNA[J]. Chem-Eur J, 2009,15(2):342-351. doi: 10.1002/chem.200801812

    26. [26]

      LIU Chun, WU Tong, HUANG Chengzhi. Gold Nanoparticles Surface Energy Transfer and Its Application to Highly Selective and Sensitive Detection of Cysteine[J]. Sci Sin Chim, 2010,40:531-537.  

    27. [27]

      Kamiya I, Tsunoyama H, Tsukuda T. Lewis Acid Character of Zero-Valent Gold Nanoclusters Under Aerobic Conditions:Intramolecular Hydroalkoxylation of Alkenes[J]. Chem Lett, 2007,36(5):646-647. doi: 10.1246/cl.2007.646

    28. [28]

      Wu Z L, Jiang D E, Mann A K P. Thiolate Ligands as a Double-Edged Sword for Co Oxidation on CeO2 Supported Au25(SCH2CH2ph)18 Nanoclusters[J]. J Am Chem Soc, 2014,136(16):6111-6122. doi: 10.1021/ja5018706

    29. [29]

      Jose D, Matthiesen J E, Parsons C. Size Focusing of Nanoparticles by Thermodynamic Control Through Ligand Interactions. Molecular Clusters Compared with Nanoparticles of Metals[J]. J Phys Chem Lett, 2012,3(7):885-890. doi: 10.1021/jz201640e

  • 加载中
    1. [1]

      Xinxin YUYongxing LIUXiaohong YIMiao CHANGFei WANGPeng WANGChongchen WANG . Photocatalytic peroxydisulfate activation for degrading organic pollutants over the zero-valent iron recovered from subway tunnels. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 864-876. doi: 10.11862/CJIC.20240438

    2. [2]

      Xia ZHANGYushi BAIXi CHANGHan ZHANGHaoyu ZHANGLiman PENGShushu HUANG . Preparation and photocatalytic degradation performance of rhodamine B of BiOCl/polyaniline. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 913-922. doi: 10.11862/CJIC.20240255

    3. [3]

      Zhaoxuan ZHULixin WANGXiaoning TANGLong LIYan SHIJiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368

    4. [4]

      Yuan CONGYunhao WANGWanping LIZhicheng ZHANGShuo LIUHuiyuan GUOHongyu YUANZhiping ZHOU . Construction and photocatalytic properties toward rhodamine B of CdS/Fe3O4 heterojunction. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2241-2249. doi: 10.11862/CJIC.20240219

    5. [5]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    6. [6]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    7. [7]

      Nan Xiao Fang Sun . 二芳基硫醚化合物的构建及应用. University Chemistry, 2025, 40(6): 360-363. doi: 10.12461/PKU.DXHX202407099

    8. [8]

      Mi Wen Baoshuo Jia Yongqi Chai Tong Wang Jianbo Liu Hailong Wu . Improvement of Fluorescence Quantitative Analysis Experiment: Simultaneous Determination of Rhodamine 6G and Rhodamine 123 in Food Using Chemometrics-Assisted Three-Dimensional Fluorescence Method. University Chemistry, 2025, 40(4): 390-398. doi: 10.12461/PKU.DXHX202405147

    9. [9]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    10. [10]

      Yongjie ZHANGBintong HUANGYueming ZHAI . Research progress of formation mechanism and characterization techniques of protein corona on the surface of nanoparticles. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2318-2334. doi: 10.11862/CJIC.20240247

    11. [11]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    12. [12]

      Yu Dai Xueting Sun Haoyu Wu Naizhu Li Guoe Cheng Xiaojin Zhang Fan Xia . Determination of the Michaelis Constant for Gold Nanozyme-Catalyzed Decomposition of Hydrogen Peroxide. University Chemistry, 2025, 40(5): 351-356. doi: 10.12461/PKU.DXHX202407052

    13. [13]

      Yihao Zhao Jitian Rao Jie Han . Synthesis and Photochromic Properties of 3,3-Diphenyl-3H-Naphthopyran: Design and Teaching Practice of a Comprehensive Organic Experiment. University Chemistry, 2024, 39(10): 149-155. doi: 10.3866/PKU.DXHX202402050

    14. [14]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    15. [15]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    16. [16]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    17. [17]

      Qianlang Wang Jijun Sun Qian Chen Quanqin Zhao Baojuan Xi . The Appeal of Organophosphorus Compounds: Clearing Their Name. University Chemistry, 2025, 40(4): 299-306. doi: 10.12461/PKU.DXHX202405205

    18. [18]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    19. [19]

      Ying Xiong Guangao Yu Lin Wu Qingwen Liu Houjin Li Shuanglian Cai Zhanxiang Liu Xingwen Sun Yuan Zheng Jie Han Xin Du Chengshan Yuan Qihan Zhang Jianrong Zhang Shuyong Zhang . Basic Operations and Specification Suggestions for Determination of Physical Constants of Organic Compounds. University Chemistry, 2025, 40(5): 106-121. doi: 10.12461/PKU.DXHX202503079

    20. [20]

      Yongjian Zhang Fangling Gao Hong Yan Keyin Ye . Electrochemical Transformation of Organosulfur Compounds. University Chemistry, 2025, 40(5): 311-317. doi: 10.12461/PKU.DXHX202407035

Metrics
  • PDF Downloads(5)
  • Abstract views(3352)
  • HTML views(1225)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return