Citation: DUAN Yuanshou, JIA Fengxia, WANG Shuo, LI Lifang. Synthesis and Thermosensitivity of Poly(N-isopropylacrylamide)/Hydrotalite Hydrogel[J]. Chinese Journal of Applied Chemistry, ;2018, 35(1): 102-108. doi: 10.11944/j.issn.1000-0518.2018.01.170034 shu

Synthesis and Thermosensitivity of Poly(N-isopropylacrylamide)/Hydrotalite Hydrogel

  • Corresponding author: LI Lifang, fangll@sdau.edu.cn
  • Received Date: 15 February 2017
    Revised Date: 19 May 2017
    Accepted Date: 19 May 2017

    Fund Project: Science and Technology Development Plan of Shandong Province 2013GZX20109Supported by the Science and Technology Development Plan of Shandong Province(No.2013GZX20109)

Figures(7)

  • To obtain thermosensitive and injectable hydrogels, hydrotalcite(LDHs) and N-isopropylacrylamide(NIPA) were used to synthesize a series of PNIPA/LDHs hydrogels by free radical polymerization. The properties of PNIPA/LDHs hydrogels were characterized by thermal gravimetric analyzer(TGA), differential scanning calorimetry(DSC) and scanning electronic microscopy(SEM). The results show that the synthesized hydrogels have a reversible sol-gel transformation around 33℃. LDHs mass ratios have no influence on the temperature and time of gelation. The thermal stability of PNIPA/LDHs is remarkably increased by the addition of LDHs. The endothermic peak of PNIPA/LDHs hydrogels increases with the increase of LDHs mass ratios and the molar ratio of Mg to Al. PNIPA/LDHs hydrogels have porous structures.
  • 加载中
    1. [1]

      Li L, Gu J, Zhang J. Injectable and Biodegradable pH-Responsive Hydrogels for Localized and Sustained Treatment of Human Fibrosarcoma[J]. ACS Appl Mater Interfaces, 2015,7(15):8033-8040. doi: 10.1021/acsami.5b00389

    2. [2]

      Andhariya N, Chudasama B, Mehta R V. Biodegradable Thermoresponsive Polymeric Magnetic Nanoparticles:A New Drug Delivery Platform for Doxorubicin[J]. J Nanopart Res, 2011,13(4):1677-1688. doi: 10.1007/s11051-010-9921-6

    3. [3]

      He T, Zou C, Song L. Improving Antiadhesion Effect of Thermosensitive Hydrogel with Sustained Release of Tissue-type Plasminogen Activator in a Rat Repeated-injury Model[J]. ACS Appl Mater Interfaces, 2016,8(49):33514-33520. doi: 10.1021/acsami.6b13184

    4. [4]

      Ding X, Wang Y. Weak Bond-based Injectable and Stimuli Responsive Hydrogels for Biomedical Applications[J]. J Mater Chem B, 2017,5:887-906. doi: 10.1039/C6TB03052A

    5. [5]

      Ren Z, Wang Y, Ma S. Effective Bone Regeneration Using Thermosensitive Poly(N-Isopropylacrylamide) Grafted Gelatin as Injectable Carrier for Bone Mesenchymal Stem Cells[J]. ACS Appl Mater Interfaces, 2015,7(34):19006-19015. doi: 10.1021/acsami.5b02821

    6. [6]

      Yang J, Lith R V, Baler K. A Thermoresponsive Biodegradable Polymer with Intrinsic Antioxidant Properties[J]. Biomacromolecules, 2014,15(11):3942-3952. doi: 10.1021/bm5010004

    7. [7]

      Kumar R A, Sivashanmugam A, Deepthi S. Injectable Chitin-poly(ε-Caprolactone)/Nanohydroxyapatite Composite Microgels Prepared by Simple Regeneration Technique for Bone Tissue Engineering[J]. ACS Appl Mater Interfaces, 2015,7(18):9399-9409. doi: 10.1021/acsami.5b02685

    8. [8]

      Choi B, Kim S, Lin B. Cartilaginous Extracellular Matrix-modified Chitosan Hydrogels for Cartilage Tissue Engineering[J]. ACS Appl Mater Interfaces, 2014,6(22):20110-20121. doi: 10.1021/am505723k

    9. [9]

      Xuan S, Lee C U, Chen C. Thermoreversible and Injectable ABC Polypeptoid Hydrogels:Controlling the Hydrogel Properties Through Molecular Design[J]. Chem Mater, 2016,28(3):727-737. doi: 10.1021/acs.chemmater.5b03528

    10. [10]

      Cui Z, Milani A H, Greensmith P J. A Study of Physical and Covalent Hydrogels Containing pH Responsive Microgel Particles and Graphene Oxide[J]. Langmuir, 2014,30(44):13384-13393. doi: 10.1021/la5032015

    11. [11]

      Xavier J R, Thakur T, Desai P. Bioactive Nanoengineered Hydrogels for Bone Tissue Engineering:A Growth-factor-free Approach[J]. ACS Nano, 2015,9(3):3109-3118. doi: 10.1021/nn507488s

    12. [12]

      Li W, Wang J, Ren J. 3D Graphene Oxide Polymer Hydrogel:Near-Infrared Light-triggered Active Scaffold for Reversible Cell Capture and on-Demand Release[J]. Adv Mater, 2013,25(46):6737-6743. doi: 10.1002/adma.v25.46

    13. [13]

      Bordes P, Pollet E, Avérous L. Nano-biocomposites:Biodegradable Ployester/nanoclay Systems[J]. Prog Polym Sci, 2009,34(2):125-155. doi: 10.1016/j.progpolymsci.2008.10.002

    14. [14]

      France K J D, Chan K J W, Cranston E D. Enhanced Mechanical Properties in Cellulose Nanocrystal-poly(Oligoethylene Glycol Methacrylate) Injectable Nanocomposite Hydrogels Through Control of Physical and Chemical Cross-Linking[J]. Biomacromolecules, 2016,17:649-660. doi: 10.1021/acs.biomac.5b01598

    15. [15]

      Patenaude M, Hoare T. Injectable, Degradable Thermoresponsive Poly(N-Isopropylacrylamide) Hydrogels[J]. ACS Macro Lett, 2012,1(3):409-413. doi: 10.1021/mz200121k

    16. [16]

      Shu Y, Yin P, Liang B. Bioinspired Design and Assembly of Layered Double Hydroxide/poly(Vinyl Alcohol) Film with High Mechanical Performance[J]. ACS Appl Mater Interfaces, 2014,6(17):15154-15161. doi: 10.1021/am503273a

    17. [17]

      Xu M, Li L, Xu J. Synthesis and Characterization of Alkyl Polyglycoside Intercalated Layered Double Hydroxides[J]. J Disper Sci Technol, 2011,32(7):1008-1013. doi: 10.1080/01932691.2010.497458

    18. [18]

      Velu S, Ramkumar V, Abathodharanan N. Effect of Interlayer Anions on the Physicochemical Properties of Zinc-Aluminum Hydrotalcite-like Compounds[J]. J Mater Sci, 1997,32(4):957-964. doi: 10.1023/A:1018561918863

    19. [19]

      Aisawa S, Ohnuma Y, Hirose K. Intercalation of Nucleotides into Layered Double Hydroxides by Ion-exchange Reaction[J]. Appl Clay Sci, 2005,28(1):137-145.  

    20. [20]

      Khassin A A, Yurieva T M, Kustova G N. Cobalt-Aluminum Co-precipitated Catalystsand Their Performance in the Fischer-tropsch Synthesis[J]. J Mol Catal A-Chem, 2001,168(1/2):193-207.  

    21. [21]

      Dong R, Zhao X, Guo B. Self-healing Conductive Injectable Hydrogels with Antibacterial Activity as Cell Delivery Carrier for Cardiac Cell Therapy[J]. ACS Appl Mater Interfaces, 2016,8(27):17138-17150. doi: 10.1021/acsami.6b04911

  • 加载中
    1. [1]

      Qiang Zhou Pingping Zhu Wei Shao Wanqun Hu Xuan Lei Haiyang Yang . Innovative Experimental Teaching Design for 3D Printing High-Strength Hydrogel Experiments. University Chemistry, 2024, 39(6): 264-270. doi: 10.3866/PKU.DXHX202310064

    2. [2]

      Qingyang Cui Feng Yu Zirun Wang Bangkun Jin Wanqun Hu Wan Li . From Jelly to Soft Matter: Preparation and Properties-Exploring of Different Kinds of Hydrogels. University Chemistry, 2024, 39(9): 338-348. doi: 10.3866/PKU.DXHX202309046

    3. [3]

      Yuena Yang Xufang Hu Yushan Liu Yaya Kuang Jian Ling Qiue Cao Chuanhua Zhou . The Realm of Smart Hydrogels. University Chemistry, 2024, 39(5): 172-183. doi: 10.3866/PKU.DXHX202310125

    4. [4]

      Yaping Li Sai An Aiqing Cao Shilong Li Ming Lei . The Application of Molecular Simulation Software in Structural Chemistry Education: First-Principles Calculation of NiFe Layered Double Hydroxide. University Chemistry, 2025, 40(3): 160-170. doi: 10.12461/PKU.DXHX202405185

    5. [5]

      Tengjiao Wang Tian Cheng Rongjun Liu Zeyi Wang Yuxuan Qiao An Wang Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094

    6. [6]

      Zhaoxuan ZHULixin WANGXiaoning TANGLong LIYan SHIJiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368

    7. [7]

      Hongyun Liu Jiarun Li Xinyi Li Zhe Liu Jiaxuan Li Cong Xiao . Course Ideological and Political Design of a Comprehensive Chemistry Experiment: Constructing a Visual Molecular Logic System Based on Intelligent Hydrogel Film Electrodes. University Chemistry, 2024, 39(2): 227-233. doi: 10.3866/PKU.DXHX202309070

    8. [8]

      Lijuan Liu Xionglei Wang . Preparation of Hydrogels from Waste Thermosetting Unsaturated Polyester Resin by Controllable Catalytic Degradation: A Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 313-318. doi: 10.12461/PKU.DXHX202403060

    9. [9]

      Laiying Zhang Yinghuan Wu Yazi Yu Yecheng Xu Haojie Zhang Weitai Wu . Innovation and Practice of Polymer Chemistry Experiment Teaching for Non-Polymer Major Students of Chemistry: Taking the Synthesis, Solution Property, Optical Performance and Application of Thermo-Sensitive Polymers as an Example. University Chemistry, 2024, 39(4): 213-220. doi: 10.3866/PKU.DXHX202310126

    10. [10]

      Jiaxin Su Jiaqi Zhang Shuming Chai Yankun Wang Sibo Wang Yuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-. doi: 10.3866/PKU.WHXB202408012

    11. [11]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    12. [12]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    13. [13]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    14. [14]

      Ji-Quan Liu Huilin Guo Ying Yang Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031

    15. [15]

      Junqing WENRuoqi WANGJianmin ZHANG . Regulation of photocatalytic hydrogen production performance in GaN/ZnO heterojunction through doping with Li and Au. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 923-938. doi: 10.11862/CJIC.20240243

    16. [16]

      Yueshuai Xu Wei Liu Xudong Chen Zhikun Zheng . 水相中制备共价有机框架单晶的实验教学设计. University Chemistry, 2025, 40(6): 256-265. doi: 10.12461/PKU.DXHX202408045

    17. [17]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    18. [18]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    19. [19]

      Han ZHANGJianfeng SUNJinsheng LIANG . Hydrothermal synthesis and luminescent properties of broadband near-infrared Na3CrF6 phosphor. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 349-356. doi: 10.11862/CJIC.20240098

    20. [20]

      Nengmin ZHUWenhao ZHUXiaoyao YINSongzhi ZHENGHao LIZeyuan WANGWenhao WEIXuanheng CHENWeihai SUN . Preparation of high-performance CsPbBr3 perovskite solar cells by the aqueous solution solvent method. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1131-1140. doi: 10.11862/CJIC.20240419

Metrics
  • PDF Downloads(2)
  • Abstract views(1393)
  • HTML views(279)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return