Nickel(Ⅱ) Complexes Containing RCOO-Substituent as Highly Active Single-Component Catalysts for Ethylene (Co)Polymerization
- Corresponding author: MU Hongliang, muhongliang@ciac.ac.cn
Citation:
LI Weiwei, MU Hongliang, LIU Jingyu, LI Yuesheng. Nickel(Ⅱ) Complexes Containing RCOO-Substituent as Highly Active Single-Component Catalysts for Ethylene (Co)Polymerization[J]. Chinese Journal of Applied Chemistry,
;2018, 35(1): 89-101.
doi:
10.11944/j.issn.1000-0518.2018.01.170031
Keim W, Kowaldt F H, Goddard R. Novel Coordination of (Benzoylmethylene)triphenylphosphorane in a Nickel Oligomerization Catalyst[J]. Angew Chem Int Ed, 1978,17(6):466-467. doi: 10.1002/(ISSN)1521-3773
Wang C, Friedrich S, Younkin T R. Neutral Nickel(Ⅱ)-Based Catalysts for Ethylene Polymerization[J]. Organometallics, 1998,17(15):3149-3151. doi: 10.1021/om980176y
Younkin T R, Connor E F, Henderson J I. Neutral, Single-Component Nickel(Ⅱ) Polyolefin Catalysts that Tolerate Heteroatoms[J]. Science, 2000,287(5452):460-462. doi: 10.1126/science.287.5452.460
Makio H, Terao H, Iwashita A. FI Catalysts for Olefin Polymerization-A Comprehensive Treatment[J]. Chem Rev, 2011,111(3):2363-2449. doi: 10.1021/cr100294r
Delferro M, Marks T J. Multinuclear Olefin Polymerization Catalysts[J]. Chem Rev, 2011,111(3):2450-2485. doi: 10.1021/cr1003634
Mu H L, Pan L, Song D P. Neutral Nickel Catalysts for Olefin Homo-and Copolymerization:Relationships Between Catalyst Structures and Catalytic Properties[J]. Chem Rev, 2015,115(22):12091-12137. doi: 10.1021/cr500370f
Wang S, Sun W H, Redshaw C. Recent Progress on Nickel-Based Systems for Ethylene Oligo-/Polymerization Catalysis[J]. J Organomet Chem, 2014,751:717-741. doi: 10.1016/j.jorganchem.2013.08.021
Sun W H. Novel Polyethylenes via Late Transition Metal Complex Pre-catalysts[M]. In Polyolefins:50 Years after Ziegler and Natta Ⅱ:Polyolefins by Metallocenes and Other Single-Site Catalysts, Kaminsky, W., Ed, 2013, 258:163-178.
Gao R, Sun W H, Redshaw C. Nickel Complex Pre-Catalysts in Ethylene Polymerization:New Approaches to Elastomeric Materials[J]. Catal Sci Technol, 2013,3(5):1172-1179. doi: 10.1039/c3cy20691b
Zhang W, Zhang W J, Sun W H. Progress of Late Transition Metal Complexes for Ethylene Oligomerization and Polymerization[J]. Prog Chem, 2005,17(2):310-319.
Soula R, Broyer J P, Llauro M F. Very Active Neutral P, O-Chelated Nickel Catalysts for Ethylene Polymerization[J]. Macromolecules, 2001,34(8):2438-2442. doi: 10.1021/ma001714x
Wiedemann T, Voit G, Tchernook A. Monofunctional Hyperbranched Ethylene Oligomers[J]. J Am Chem Soc, 2014,136(5):2078-2085. doi: 10.1021/ja411945n
Zuideveld M A, Wehrmann P, Röhr C. Remote Substituents Controlling Catalytic Polymerization by Very Active and Robust Neutral Nickel(Ⅱ) Complexes[J]. Angew Chem, 2004,116(7):887-891. doi: 10.1002/(ISSN)1521-3757
Yakhvarov D G, Basvani K R, Kindermann M K. O-Acylated 2-Phosphanylphenol Derivatives-Useful Ligands in the Nickel-Catalyzed Polymerization of Ethylene[J]. Eur J Inorg Chem, 2009,2009(9):1234-1242. doi: 10.1002/ejic.v2009:9
Haak R M, Wezenberg S J, Kleij A W. Cooperative Multimetallic Catalysis Using Metallosalens[J]. Chem Commun, 2010,46(16):2713-2723. doi: 10.1039/c001392g
Konsler R G, Karl J, Jacobsen E N. Cooperative Asymmetric Catalysis with Dimeric Salen Complexes[J]. J Am Chem Soc, 1998,120(41):10780-10781. doi: 10.1021/ja982683c
Jacobsen E N. Asymmetric Catalysis of Epoxide Ring Opening Reactions[J]. Acc Chem Res, 2000,33(6):421-431. doi: 10.1021/ar960061v
Mazet C, Jacobsen E N. Dinuclear {(salen)Al} Complexes Display Expanded Scope in the Conjugate Cyanation of Alpha, Beta-Unsaturated Imides[J]. Angew Chem Int Ed, 2008,47(9):1762-1765. doi: 10.1002/(ISSN)1521-3773
Zhang Z, Wang Z, Zhang R. An Efficient Titanium Catalyst for Enantioselective Cyanation of Aldehydes:Cooperative Catalysis[J]. Angew Chem Int Ed, 2010,49(38):6746-6750. doi: 10.1002/anie.201002127
Evano G, Schaus J V, Panek J S. A Convergent Synthesis of the Macrocyclic Core of Cytotrienins:Application of RCM for Macrocyclization[J]. Org Lett, 2004,6(4):525-528. doi: 10.1021/ol036284k
Cámpora J, Del Mar Conejo M A, Mereiter K. Synthesis of Dialkyl, Diaryl and Metallacyclic Complexes of Ni and Pd Containing Pyridine, α-Diimines and Other Nitrogen Ligands:Crystal Structures of the Complexes Cis-NiR2Py2(R=benzyl, mesityl)[J]. J Organomet Chem, 2003,683(1):220-239. doi: 10.1016/S0022-328X(03)00691-0
Göttker-Schnetmann I, Wehrmann P, Röhr C. Substituent Effects in (κ2-N, O)-Salicylaldiminato Nickel(Ⅱ)-Methyl Pyridine Polymerization Catalysts:Terphenyls Controlling Polyethylene Microstructures[J]. Organometallics, 2007,26(9):2348-2362. doi: 10.1021/om0611498
Bedernjak A F, Zaytsev A V, Babolat M. Synthesis and Evaluation of Novel 7-and 8-Aminophenoxazinones for the Detection of Beta-Alanine Aminopeptidase Activity and the Reliable Identification of Pseudomonas aeruginosa in Clinical Samples[J]. J Med Chem, 2016,59(10):4476-4487. doi: 10.1021/acs.jmedchem.5b01591
Hu X, Dai S, Chen C. Ethylene Polymerization by Salicylaldimine Nickel(Ⅱ) Complexes Containing a Dibenzhydryl Moiety[J]. Dalton Trans, 2016,45(4):1496-1503. doi: 10.1039/C5DT04408A
Sujith S, Joe D J, Na S J. Ethylene/Polar Norbornene Copolymerizations by Bimetallic Salicylaldimine-Nickel Catalysts[J]. Macromolecules, 2005,38(24):10027-10033. doi: 10.1021/ma051344i
Mu H L, Ye W P, Song D P. Highly Active Single-Component Neutral Nickel Ethylene Polymerization Catalysts:The Influence of Electronic Effects and Spectator Ligands[J]. Organometallics, 2010,29(23):6282-6290. doi: 10.1021/om100658j
Chen Z, Mesgar M, White P S. Synthesis of Branched Ultrahigh-Molecular-Weight Polyethylene Using Highly Active Neutral, Single-Component Ni(Ⅱ) Catalysts[J]. ACS Catal, 2014:631-636.
Connor E F, Younkin T R, Henderson J I. Synthesis of Neutral Nickel Catalysts for Ethylene Polymerization-The Influence of Ligand Size on Catalyst Stability[J]. Chem Commun, 2003(18):2272-2273. doi: 10.1039/b306701g
Wehrmann P, Mecking S. Highly Active Binuclear Neutral Nickel(Ⅱ) Catalysts Affording High Molecular Weight Polyethylene[J]. Organometallics, 2008,27(7):1399-1408. doi: 10.1021/om700942z
Liu S, Motta A, Mouat A R. Very Large Cooperative Effects in Heterobimetallic Titanium-Chromium Catalysts for Ethylene Polymerization/Copolymerization[J]. J Am Chem Soc, 2014,136(29):10460-10469. doi: 10.1021/ja5046742
Connor E F, Younkin T R, Henderson J I. Linear Functionalized Polyethylene Prepared with Highly Active Neutral Ni(Ⅱ) Complexes[J]. J Polym Sci, Part A:Polym Chem, 2002,40(16):2842-2854. doi: 10.1002/pola.v40:16
Kuhn P, Semeril D, Jeunesse C. Catalytic Applications of Keto-Stabilised Phosphorus Ylides Based on a Macrocyclic Scaffold:Calixarenes with One or Two Pendant Ni(P, O)-Subunits as Ethylene Oligomerisation and Polymerisation Catalysts[J]. Dalton Trans, 2006(30):3647-3659. doi: 10.1039/B603861A
Song D P, Wu J Q, Ye W P. Accessible, Highly Active Single-Component Beta-Ketiminato Neutral Nickel(Ⅱ) Catalysts for Ethylene Polymerization[J]. Organometallics, 2010,29(10):2306-2314. doi: 10.1021/om100075u
Radlauer M R, Day M W, Agapie T. Bimetallic Effects on Ethylene Polymerization in the Presence of Amines:Inhibition of the Deactivation by Lewis Bases[J]. J Am Chem Soc, 2012,134(3):1478-1481. doi: 10.1021/ja210990t
Radlauer M R, Buckley A K, Henling L M. Bimetallic Coordination Insertion Polymerization of Unprotected Polar Monomers:Copolymerization of Amino Olefins and Ethylene by Dinickel Bisphenoxyiminato Catalysts[J]. J Am Chem Soc, 2013,135(10):3784-3787. doi: 10.1021/ja4004816
Galland G B, de Souza R F, Mauler R S. 13C NMR Determination of the Composition of Linear Low-Density Polyethylene Obtained with[η3-Methallyl-Nickel-Diimine]PF6 Complex[J]. Macromolecules, 1999,32(5):1620-1625. doi: 10.1021/ma981669h
Dai S, Chen C. Direct Synthesis of Functionalized High-Molecular-Weight Polyethylene by Copolymerization of Ethylene with Polar Monomers[J]. Angew Chem Int Ed, 2016,55(42):13281-13285. doi: 10.1002/anie.201607152
Takeuchi D, Chiba Y, Takano S. Double-Decker-Type Dinuclear Nickel Catalyst for Olefin Polymerization:Efficient Incorporation of Functional Co-monomers[J]. Angew Chem Int Ed, 2013,52(48):12536-12540. doi: 10.1002/anie.201307741
Heng Gao , Zhaocong Cheng , Guangshui Tu , Zonglin Qiu , Xieyi Xiao , Haotian Zhou , Handou Zheng , Haiyang Gao . Thermally robust bis(imino)pyridyl iron catalysts for ethylene polymerization: Synergy effects of weak π-π interaction, steric bulk, and electronic tuning. Chinese Chemical Letters, 2025, 36(5): 110762-. doi: 10.1016/j.cclet.2024.110762
Hailong He , Wenbing Wang , Wenmin Pang , Chen Zou , Dan Peng . Double stimulus-responsive palladium catalysts for ethylene polymerization and copolymerization. Chinese Chemical Letters, 2024, 35(7): 109534-. doi: 10.1016/j.cclet.2024.109534
Shunyu Wang , Yanan Zhu , Yang Zhao , Wanli Nie , Hong Meng . Steric effects and electronic manipulation of multiple donors on S0/S1 transition of Dn-A emitters. Chinese Chemical Letters, 2025, 36(4): 110555-. doi: 10.1016/j.cclet.2024.110555
Jinpeng Du , Junlin Chen , Yulong Shan , Tongliang Zhang , Yu Sun , Zhongqi Liu , Xiaoyan Shi , Wenpo Shan , Yunbo Yu , Hong He . Insight into the effects of C3H6 on fresh and hydrothermally aged Cu-SSZ-39 catalysts. Chinese Chemical Letters, 2025, 36(3): 110019-. doi: 10.1016/j.cclet.2024.110019
Xinyu You , Xin Zhang , Shican Jiang , Yiru Ye , Lin Gu , Hexun Zhou , Pandong Ma , Jamal Ftouni , Abhishek Dutta Chowdhury . Efficacy of Ca/ZSM-5 zeolites derived from precipitated calcium carbonate in the methanol-to-olefin process. Chinese Journal of Structural Chemistry, 2024, 43(4): 100265-100265. doi: 10.1016/j.cjsc.2024.100265
Zhenyang Lin . A classification scheme for inorganic cluster compounds based on their electronic structures and bonding characteristics. Chinese Journal of Structural Chemistry, 2024, 43(5): 100254-100254. doi: 10.1016/j.cjsc.2024.100254
Bing Niu , Honggao Huang , Liwei Luo , Li Zhang , Jianbo Tan . Coating colloidal particles with a well-defined polymer layer by surface-initiated photoinduced polymerization-induced self-assembly and the subsequent seeded polymerization. Chinese Chemical Letters, 2025, 36(2): 110431-. doi: 10.1016/j.cclet.2024.110431
Yu-Yao Li , Xiao-Hui Li , Zhi-Xuan An , Yang Chu , Xiu-Li Wang . Room-temperature olefin epoxidation reaction by two 2D cobalt metal-organic complexes under O2 atmosphere: Coordination and structural regulation. Chinese Chemical Letters, 2025, 36(4): 109716-. doi: 10.1016/j.cclet.2024.109716
Xiang Li , Beibei Zhang , Zhixiang Wang , Xiangyu Chen . Organocatalyzed iodine-mediated reversible-deactivation radical polymerization via photoinduced charge transfer complex catalysis. Chinese Chemical Letters, 2025, 36(6): 110383-. doi: 10.1016/j.cclet.2024.110383
Feng Shi , Guiling Li , Haibing Zhu , Ling Li , Ming Chen , Juan Li , Huifang Shen , Hao Zeng , Lingfeng Min , Zhanjun Yang . Nanozyme-triggered polymerization amplification strategy for constructing highly sensitive surface plasmon resonance immunosensing. Chinese Chemical Letters, 2025, 36(6): 110333-. doi: 10.1016/j.cclet.2024.110333
Hanqing Zhang , Xiaoxia Wang , Chen Chen , Xianfeng Yang , Chungli Dong , Yucheng Huang , Xiaoliang Zhao , Dongjiang Yang . Selective CO2-to-formic acid electrochemical conversion by modulating electronic environment of copper phthalocyanine with defective graphene. Chinese Journal of Structural Chemistry, 2023, 42(10): 100089-100089. doi: 10.1016/j.cjsc.2023.100089
Jianmei Han , Peng Wang , Hua Zhang , Ning Song , Xuguang An , Baojuan Xi , Shenglin Xiong . Performance optimization of chalcogenide catalytic materials in lithium-sulfur batteries: Structural and electronic engineering. Chinese Chemical Letters, 2024, 35(7): 109543-. doi: 10.1016/j.cclet.2024.109543
Shiqi Peng , Yongfang Rao , Tan Li , Yufei Zhang , Jun-ji Cao , Shuncheng Lee , Yu Huang . Regulating the electronic structure of Ir single atoms by ZrO2 nanoparticles for enhanced catalytic oxidation of formaldehyde at room temperature. Chinese Chemical Letters, 2024, 35(7): 109219-. doi: 10.1016/j.cclet.2023.109219
Saadullah Khattak , Hong-Tao Xu , Jianliang Shen . Bio-electronic bandage: Self-powered performances to accelerate intestinal wound healing. Chinese Chemical Letters, 2024, 35(12): 110210-. doi: 10.1016/j.cclet.2024.110210
Xinyu Tian , Jiaxiang Guo , Zeyi Li , Shihou Sheng , Tianyu Zhang , Xianfei Li , Chuandong Dou . Control over electronic structures of organic diradicaloids via precise B/O-heterocycle fusion. Chinese Chemical Letters, 2025, 36(1): 110174-. doi: 10.1016/j.cclet.2024.110174
Yanjie Li , Chaoqun Qu , Siqi Meng , Jiaqi Hu , Ze Gao , Hongji Xu , Rui Gao , Ming Feng . Revealing electronic state evolution of Co(Ⅱ)/Co(Ⅲ) in CoO (111) plane during OER process through magnetic measurement. Chinese Chemical Letters, 2025, 36(3): 109872-. doi: 10.1016/j.cclet.2024.109872
Kongchuan Wu , Dandan Lu , Jianbin Lin , Ting-Bin Wen , Wei Hao , Kai Tan , Hui-Jun Zhang . Elucidating ligand effects in rhodium(Ⅲ)-catalyzed arene–alkene coupling reactions. Chinese Chemical Letters, 2024, 35(5): 108906-. doi: 10.1016/j.cclet.2023.108906
Yue WANG , Zhizhi GU , Jingyi DONG , Jie ZHU , Cunguang LIU , Guohan LI , Meichen LU , Jian HAN , Shengnan CAO , Wei WANG . Effects of kelp-derived carbon dots on embryonic development of zebrafish. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1209-1217. doi: 10.11862/CJIC.20230423
Qiang Fu , Shouhong Sun , Kangzhi Lu , Ning Li , Zhanhua Dong . Boron-doped carbon dots: Doping strategies, performance effects, and applications. Chinese Chemical Letters, 2024, 35(7): 109136-. doi: 10.1016/j.cclet.2023.109136
Luyao Lu , Chen Zhu , Fei Li , Pu Wang , Xi Kang , Yong Pei , Manzhou Zhu . Ligand effects on geometric structures and catalytic activities of atomically precise copper nanoclusters. Chinese Journal of Structural Chemistry, 2024, 43(10): 100411-100411. doi: 10.1016/j.cjsc.2024.100411
Thermal ellipsoids are drawn at the 30% probability level, and H atoms are omitted for clarity. Selected bond distances(nm) and angles(°):Ni1—N1=0.1888(2), Ni1—N2=0.1900(2), Ni1—O1=0.1922(2), Ni1—C6=0.1933(3), N1—Ni1—N2=171.08(9), N1—Ni1—O1=93.08(8), N1—Ni1—C6=9342(11), N2—Ni1—O1=86.31(8), N2—Ni1—C6=88.42(11), O1—Ni1—C6=170.11(12)
Thermal ellipsoids are drawn at the 30% probability level, and H atoms are omitted for clarity. Selected bond distances(nm) and angles(°):Ni1—N1=0.1901(5), Ni1—N2=0.1915(5), Ni1—O1=0.1907(4), Ni1—C13=0.1921(6), N1—Ni1—N2=176.2(2), N1—Ni1—O1=92.82(18), N1—Ni1—C13=93.2(2), N2—Ni1—O1=85.82(19), N2—Ni1—C13=88.3(2), O1—Ni1—C13=173.2(2)
Thermal ellipsoids are drawn at the 30% probability level, and H atoms are omitted for clarity. Selected bond distances(nm) and angles(°):Ni1—N1=0.1886(2), Ni1—N2=0.1904(3), Ni1—O1=0.1907(2), Ni1—C35=0.1935(3), N1—Ni1—N2=168.47(11), N1—Ni1—O1=93.87(10), N1—Ni1—C35=95.02(13), N2—Ni1—O1=85.55(11), N2—Ni1—C35=88.21(13), O1—Ni1—C35=164.62(13)