Citation: LI Weiwei, MU Hongliang, LIU Jingyu, LI Yuesheng. Nickel(Ⅱ) Complexes Containing RCOO-Substituent as Highly Active Single-Component Catalysts for Ethylene (Co)Polymerization[J]. Chinese Journal of Applied Chemistry, ;2018, 35(1): 89-101. doi: 10.11944/j.issn.1000-0518.2018.01.170031 shu

Nickel(Ⅱ) Complexes Containing RCOO-Substituent as Highly Active Single-Component Catalysts for Ethylene (Co)Polymerization

  • Corresponding author: MU Hongliang, muhongliang@ciac.ac.cn
  • Received Date: 13 February 2017
    Revised Date: 27 March 2017
    Accepted Date: 27 March 2016

    Fund Project: Supported by the National Natural Science Foundation of China(No.21304087)National Natural Science Foundation of China 21304087

Figures(8)

  • Mononuclear nickel complexes[(2, 6-R2-C6H3)NC(H)(3-Ph-5-PhCOO-2-O-C6H2)-κ2-N, O]Ni(CH3)(pyridine)](R=iPr; 3, 5-tBu2C6H3)(Ni1~Ni2) and binuclear nickel complex(Ni3) were synthesized, characterized and applied in ethylene (co)polymerization. As single-component catalysts, all these complexes are capable of converting ethylene to branched polyethylenes(PE) with moderate relative molecular mass. The electron-donating group PhCOO-facilitates the initiation of catalyst Ni1, leading to better catalytic activity at low temperature compared to nickel methyl pyridine comples(Ni0). Introducing bulky 2, 6-(3, 5-(t-Bu)2C6H3)2C6H3N-moiety, the activities of Ni2 up to 1.8×106 g of PE mol-1·Ni-1·h-1(at 5×105 Pa ethylene) were among the highest values using phenoxyiminato neutral nickel catalysts. Binuclear catalyst Ni3 showes better tolerance toward PPh3 donor additive than its mononuclear counterpart. In the presence of comonomers 1, 5-hexadiene, 1, 7-octadiene, 6-bromo-1-hexene, or methyl 10-undecenoate, these catalysts effectively enchain these comonomers into the polymer chain to give functionalized polyethylenes.
  • 加载中
    1. [1]

      Keim W, Kowaldt F H, Goddard R. Novel Coordination of (Benzoylmethylene)triphenylphosphorane in a Nickel Oligomerization Catalyst[J]. Angew Chem Int Ed, 1978,17(6):466-467. doi: 10.1002/(ISSN)1521-3773

    2. [2]

      Wang C, Friedrich S, Younkin T R. Neutral Nickel(Ⅱ)-Based Catalysts for Ethylene Polymerization[J]. Organometallics, 1998,17(15):3149-3151. doi: 10.1021/om980176y

    3. [3]

      Younkin T R, Connor E F, Henderson J I. Neutral, Single-Component Nickel(Ⅱ) Polyolefin Catalysts that Tolerate Heteroatoms[J]. Science, 2000,287(5452):460-462. doi: 10.1126/science.287.5452.460

    4. [4]

      Makio H, Terao H, Iwashita A. FI Catalysts for Olefin Polymerization-A Comprehensive Treatment[J]. Chem Rev, 2011,111(3):2363-2449. doi: 10.1021/cr100294r

    5. [5]

      Delferro M, Marks T J. Multinuclear Olefin Polymerization Catalysts[J]. Chem Rev, 2011,111(3):2450-2485. doi: 10.1021/cr1003634

    6. [6]

      Mu H L, Pan L, Song D P. Neutral Nickel Catalysts for Olefin Homo-and Copolymerization:Relationships Between Catalyst Structures and Catalytic Properties[J]. Chem Rev, 2015,115(22):12091-12137. doi: 10.1021/cr500370f

    7. [7]

      Wang S, Sun W H, Redshaw C. Recent Progress on Nickel-Based Systems for Ethylene Oligo-/Polymerization Catalysis[J]. J Organomet Chem, 2014,751:717-741. doi: 10.1016/j.jorganchem.2013.08.021

    8. [8]

      Sun W H. Novel Polyethylenes via Late Transition Metal Complex Pre-catalysts[M]. In Polyolefins:50 Years after Ziegler and Natta Ⅱ:Polyolefins by Metallocenes and Other Single-Site Catalysts, Kaminsky, W., Ed, 2013, 258:163-178.

    9. [9]

      Gao R, Sun W H, Redshaw C. Nickel Complex Pre-Catalysts in Ethylene Polymerization:New Approaches to Elastomeric Materials[J]. Catal Sci Technol, 2013,3(5):1172-1179. doi: 10.1039/c3cy20691b

    10. [10]

      Zhang W, Zhang W J, Sun W H. Progress of Late Transition Metal Complexes for Ethylene Oligomerization and Polymerization[J]. Prog Chem, 2005,17(2):310-319.  

    11. [11]

      Soula R, Broyer J P, Llauro M F. Very Active Neutral P, O-Chelated Nickel Catalysts for Ethylene Polymerization[J]. Macromolecules, 2001,34(8):2438-2442. doi: 10.1021/ma001714x

    12. [12]

      Wiedemann T, Voit G, Tchernook A. Monofunctional Hyperbranched Ethylene Oligomers[J]. J Am Chem Soc, 2014,136(5):2078-2085. doi: 10.1021/ja411945n

    13. [13]

      Zuideveld M A, Wehrmann P, Röhr C. Remote Substituents Controlling Catalytic Polymerization by Very Active and Robust Neutral Nickel(Ⅱ) Complexes[J]. Angew Chem, 2004,116(7):887-891. doi: 10.1002/(ISSN)1521-3757

    14. [14]

      Yakhvarov D G, Basvani K R, Kindermann M K. O-Acylated 2-Phosphanylphenol Derivatives-Useful Ligands in the Nickel-Catalyzed Polymerization of Ethylene[J]. Eur J Inorg Chem, 2009,2009(9):1234-1242. doi: 10.1002/ejic.v2009:9

    15. [15]

      Haak R M, Wezenberg S J, Kleij A W. Cooperative Multimetallic Catalysis Using Metallosalens[J]. Chem Commun, 2010,46(16):2713-2723. doi: 10.1039/c001392g

    16. [16]

      Konsler R G, Karl J, Jacobsen E N. Cooperative Asymmetric Catalysis with Dimeric Salen Complexes[J]. J Am Chem Soc, 1998,120(41):10780-10781. doi: 10.1021/ja982683c

    17. [17]

      Jacobsen E N. Asymmetric Catalysis of Epoxide Ring Opening Reactions[J]. Acc Chem Res, 2000,33(6):421-431. doi: 10.1021/ar960061v

    18. [18]

      Mazet C, Jacobsen E N. Dinuclear {(salen)Al} Complexes Display Expanded Scope in the Conjugate Cyanation of Alpha, Beta-Unsaturated Imides[J]. Angew Chem Int Ed, 2008,47(9):1762-1765. doi: 10.1002/(ISSN)1521-3773

    19. [19]

      Zhang Z, Wang Z, Zhang R. An Efficient Titanium Catalyst for Enantioselective Cyanation of Aldehydes:Cooperative Catalysis[J]. Angew Chem Int Ed, 2010,49(38):6746-6750. doi: 10.1002/anie.201002127

    20. [20]

      Evano G, Schaus J V, Panek J S. A Convergent Synthesis of the Macrocyclic Core of Cytotrienins:Application of RCM for Macrocyclization[J]. Org Lett, 2004,6(4):525-528. doi: 10.1021/ol036284k

    21. [21]

      Cámpora J, Del Mar Conejo M A, Mereiter K. Synthesis of Dialkyl, Diaryl and Metallacyclic Complexes of Ni and Pd Containing Pyridine, α-Diimines and Other Nitrogen Ligands:Crystal Structures of the Complexes Cis-NiR2Py2(R=benzyl, mesityl)[J]. J Organomet Chem, 2003,683(1):220-239. doi: 10.1016/S0022-328X(03)00691-0

    22. [22]

      Göttker-Schnetmann I, Wehrmann P, Röhr C. Substituent Effects in (κ2-N, O)-Salicylaldiminato Nickel(Ⅱ)-Methyl Pyridine Polymerization Catalysts:Terphenyls Controlling Polyethylene Microstructures[J]. Organometallics, 2007,26(9):2348-2362. doi: 10.1021/om0611498

    23. [23]

      Bedernjak A F, Zaytsev A V, Babolat M. Synthesis and Evaluation of Novel 7-and 8-Aminophenoxazinones for the Detection of Beta-Alanine Aminopeptidase Activity and the Reliable Identification of Pseudomonas aeruginosa in Clinical Samples[J]. J Med Chem, 2016,59(10):4476-4487. doi: 10.1021/acs.jmedchem.5b01591

    24. [24]

      Hu X, Dai S, Chen C. Ethylene Polymerization by Salicylaldimine Nickel(Ⅱ) Complexes Containing a Dibenzhydryl Moiety[J]. Dalton Trans, 2016,45(4):1496-1503. doi: 10.1039/C5DT04408A

    25. [25]

      Sujith S, Joe D J, Na S J. Ethylene/Polar Norbornene Copolymerizations by Bimetallic Salicylaldimine-Nickel Catalysts[J]. Macromolecules, 2005,38(24):10027-10033. doi: 10.1021/ma051344i

    26. [26]

      Mu H L, Ye W P, Song D P. Highly Active Single-Component Neutral Nickel Ethylene Polymerization Catalysts:The Influence of Electronic Effects and Spectator Ligands[J]. Organometallics, 2010,29(23):6282-6290. doi: 10.1021/om100658j

    27. [27]

      Chen Z, Mesgar M, White P S. Synthesis of Branched Ultrahigh-Molecular-Weight Polyethylene Using Highly Active Neutral, Single-Component Ni(Ⅱ) Catalysts[J]. ACS Catal, 2014:631-636.  

    28. [28]

      Connor E F, Younkin T R, Henderson J I. Synthesis of Neutral Nickel Catalysts for Ethylene Polymerization-The Influence of Ligand Size on Catalyst Stability[J]. Chem Commun, 2003(18):2272-2273. doi: 10.1039/b306701g

    29. [29]

      Wehrmann P, Mecking S. Highly Active Binuclear Neutral Nickel(Ⅱ) Catalysts Affording High Molecular Weight Polyethylene[J]. Organometallics, 2008,27(7):1399-1408. doi: 10.1021/om700942z

    30. [30]

      Liu S, Motta A, Mouat A R. Very Large Cooperative Effects in Heterobimetallic Titanium-Chromium Catalysts for Ethylene Polymerization/Copolymerization[J]. J Am Chem Soc, 2014,136(29):10460-10469. doi: 10.1021/ja5046742

    31. [31]

      Connor E F, Younkin T R, Henderson J I. Linear Functionalized Polyethylene Prepared with Highly Active Neutral Ni(Ⅱ) Complexes[J]. J Polym Sci, Part A:Polym Chem, 2002,40(16):2842-2854. doi: 10.1002/pola.v40:16

    32. [32]

      Kuhn P, Semeril D, Jeunesse C. Catalytic Applications of Keto-Stabilised Phosphorus Ylides Based on a Macrocyclic Scaffold:Calixarenes with One or Two Pendant Ni(P, O)-Subunits as Ethylene Oligomerisation and Polymerisation Catalysts[J]. Dalton Trans, 2006(30):3647-3659. doi: 10.1039/B603861A

    33. [33]

      Song D P, Wu J Q, Ye W P. Accessible, Highly Active Single-Component Beta-Ketiminato Neutral Nickel(Ⅱ) Catalysts for Ethylene Polymerization[J]. Organometallics, 2010,29(10):2306-2314. doi: 10.1021/om100075u

    34. [34]

      Radlauer M R, Day M W, Agapie T. Bimetallic Effects on Ethylene Polymerization in the Presence of Amines:Inhibition of the Deactivation by Lewis Bases[J]. J Am Chem Soc, 2012,134(3):1478-1481. doi: 10.1021/ja210990t

    35. [35]

      Radlauer M R, Buckley A K, Henling L M. Bimetallic Coordination Insertion Polymerization of Unprotected Polar Monomers:Copolymerization of Amino Olefins and Ethylene by Dinickel Bisphenoxyiminato Catalysts[J]. J Am Chem Soc, 2013,135(10):3784-3787. doi: 10.1021/ja4004816

    36. [36]

      Galland G B, de Souza R F, Mauler R S. 13C NMR Determination of the Composition of Linear Low-Density Polyethylene Obtained with[η3-Methallyl-Nickel-Diimine]PF6 Complex[J]. Macromolecules, 1999,32(5):1620-1625. doi: 10.1021/ma981669h

    37. [37]

      Dai S, Chen C. Direct Synthesis of Functionalized High-Molecular-Weight Polyethylene by Copolymerization of Ethylene with Polar Monomers[J]. Angew Chem Int Ed, 2016,55(42):13281-13285. doi: 10.1002/anie.201607152

    38. [38]

      Takeuchi D, Chiba Y, Takano S. Double-Decker-Type Dinuclear Nickel Catalyst for Olefin Polymerization:Efficient Incorporation of Functional Co-monomers[J]. Angew Chem Int Ed, 2013,52(48):12536-12540. doi: 10.1002/anie.201307741

  • 加载中
    1. [1]

      Heng GaoZhaocong ChengGuangshui TuZonglin QiuXieyi XiaoHaotian ZhouHandou ZhengHaiyang Gao . Thermally robust bis(imino)pyridyl iron catalysts for ethylene polymerization: Synergy effects of weak π-π interaction, steric bulk, and electronic tuning. Chinese Chemical Letters, 2025, 36(5): 110762-. doi: 10.1016/j.cclet.2024.110762

    2. [2]

      Hailong HeWenbing WangWenmin PangChen ZouDan Peng . Double stimulus-responsive palladium catalysts for ethylene polymerization and copolymerization. Chinese Chemical Letters, 2024, 35(7): 109534-. doi: 10.1016/j.cclet.2024.109534

    3. [3]

      Shunyu WangYanan ZhuYang ZhaoWanli NieHong Meng . Steric effects and electronic manipulation of multiple donors on S0/S1 transition of Dn-A emitters. Chinese Chemical Letters, 2025, 36(4): 110555-. doi: 10.1016/j.cclet.2024.110555

    4. [4]

      Jinpeng DuJunlin ChenYulong ShanTongliang ZhangYu SunZhongqi LiuXiaoyan ShiWenpo ShanYunbo YuHong He . Insight into the effects of C3H6 on fresh and hydrothermally aged Cu-SSZ-39 catalysts. Chinese Chemical Letters, 2025, 36(3): 110019-. doi: 10.1016/j.cclet.2024.110019

    5. [5]

      Xinyu You Xin Zhang Shican Jiang Yiru Ye Lin Gu Hexun Zhou Pandong Ma Jamal Ftouni Abhishek Dutta Chowdhury . Efficacy of Ca/ZSM-5 zeolites derived from precipitated calcium carbonate in the methanol-to-olefin process. Chinese Journal of Structural Chemistry, 2024, 43(4): 100265-100265. doi: 10.1016/j.cjsc.2024.100265

    6. [6]

      Zhenyang Lin . A classification scheme for inorganic cluster compounds based on their electronic structures and bonding characteristics. Chinese Journal of Structural Chemistry, 2024, 43(5): 100254-100254. doi: 10.1016/j.cjsc.2024.100254

    7. [7]

      Bing NiuHonggao HuangLiwei LuoLi ZhangJianbo Tan . Coating colloidal particles with a well-defined polymer layer by surface-initiated photoinduced polymerization-induced self-assembly and the subsequent seeded polymerization. Chinese Chemical Letters, 2025, 36(2): 110431-. doi: 10.1016/j.cclet.2024.110431

    8. [8]

      Yu-Yao LiXiao-Hui LiZhi-Xuan AnYang ChuXiu-Li Wang . Room-temperature olefin epoxidation reaction by two 2D cobalt metal-organic complexes under O2 atmosphere: Coordination and structural regulation. Chinese Chemical Letters, 2025, 36(4): 109716-. doi: 10.1016/j.cclet.2024.109716

    9. [9]

      Xiang LiBeibei ZhangZhixiang WangXiangyu Chen . Organocatalyzed iodine-mediated reversible-deactivation radical polymerization via photoinduced charge transfer complex catalysis. Chinese Chemical Letters, 2025, 36(6): 110383-. doi: 10.1016/j.cclet.2024.110383

    10. [10]

      Feng ShiGuiling LiHaibing ZhuLing LiMing ChenJuan LiHuifang ShenHao ZengLingfeng MinZhanjun Yang . Nanozyme-triggered polymerization amplification strategy for constructing highly sensitive surface plasmon resonance immunosensing. Chinese Chemical Letters, 2025, 36(6): 110333-. doi: 10.1016/j.cclet.2024.110333

    11. [11]

      Hanqing Zhang Xiaoxia Wang Chen Chen Xianfeng Yang Chungli Dong Yucheng Huang Xiaoliang Zhao Dongjiang Yang . Selective CO2-to-formic acid electrochemical conversion by modulating electronic environment of copper phthalocyanine with defective graphene. Chinese Journal of Structural Chemistry, 2023, 42(10): 100089-100089. doi: 10.1016/j.cjsc.2023.100089

    12. [12]

      Jianmei HanPeng WangHua ZhangNing SongXuguang AnBaojuan XiShenglin Xiong . Performance optimization of chalcogenide catalytic materials in lithium-sulfur batteries: Structural and electronic engineering. Chinese Chemical Letters, 2024, 35(7): 109543-. doi: 10.1016/j.cclet.2024.109543

    13. [13]

      Shiqi PengYongfang RaoTan LiYufei ZhangJun-ji CaoShuncheng LeeYu Huang . Regulating the electronic structure of Ir single atoms by ZrO2 nanoparticles for enhanced catalytic oxidation of formaldehyde at room temperature. Chinese Chemical Letters, 2024, 35(7): 109219-. doi: 10.1016/j.cclet.2023.109219

    14. [14]

      Saadullah KhattakHong-Tao XuJianliang Shen . Bio-electronic bandage: Self-powered performances to accelerate intestinal wound healing. Chinese Chemical Letters, 2024, 35(12): 110210-. doi: 10.1016/j.cclet.2024.110210

    15. [15]

      Xinyu TianJiaxiang GuoZeyi LiShihou ShengTianyu ZhangXianfei LiChuandong Dou . Control over electronic structures of organic diradicaloids via precise B/O-heterocycle fusion. Chinese Chemical Letters, 2025, 36(1): 110174-. doi: 10.1016/j.cclet.2024.110174

    16. [16]

      Yanjie LiChaoqun QuSiqi MengJiaqi HuZe GaoHongji XuRui GaoMing Feng . Revealing electronic state evolution of Co(Ⅱ)/Co(Ⅲ) in CoO (111) plane during OER process through magnetic measurement. Chinese Chemical Letters, 2025, 36(3): 109872-. doi: 10.1016/j.cclet.2024.109872

    17. [17]

      Kongchuan WuDandan LuJianbin LinTing-Bin WenWei HaoKai TanHui-Jun Zhang . Elucidating ligand effects in rhodium(Ⅲ)-catalyzed arene–alkene coupling reactions. Chinese Chemical Letters, 2024, 35(5): 108906-. doi: 10.1016/j.cclet.2023.108906

    18. [18]

      Yue WANGZhizhi GUJingyi DONGJie ZHUCunguang LIUGuohan LIMeichen LUJian HANShengnan CAOWei WANG . Effects of kelp-derived carbon dots on embryonic development of zebrafish. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1209-1217. doi: 10.11862/CJIC.20230423

    19. [19]

      Qiang FuShouhong SunKangzhi LuNing LiZhanhua Dong . Boron-doped carbon dots: Doping strategies, performance effects, and applications. Chinese Chemical Letters, 2024, 35(7): 109136-. doi: 10.1016/j.cclet.2023.109136

    20. [20]

      Luyao Lu Chen Zhu Fei Li Pu Wang Xi Kang Yong Pei Manzhou Zhu . Ligand effects on geometric structures and catalytic activities of atomically precise copper nanoclusters. Chinese Journal of Structural Chemistry, 2024, 43(10): 100411-100411. doi: 10.1016/j.cjsc.2024.100411

Metrics
  • PDF Downloads(5)
  • Abstract views(1248)
  • HTML views(96)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return