Citation: ZHANG Xiaoqin, WU Jiang, WANG Jiantai, YAN Chi, FU Yingying, XIE Zhiyuan. Silver Nanowire Composite Transparent Electrode Based Flexible Polymer Solar Cells[J]. Chinese Journal of Applied Chemistry, ;2018, 35(1): 109-115. doi: 10.11944/j.issn.1000-0518.2018.01.170025 shu

Silver Nanowire Composite Transparent Electrode Based Flexible Polymer Solar Cells

  • Corresponding author: XIE Zhiyuan, xiezy_n@ciac.ac.cn
  • Received Date: 23 January 2017
    Revised Date: 6 April 2017
    Accepted Date: 6 April 2017

    Fund Project: National Natural Science Foundation of China 51325303Strategic Priority Research Program of the Chinese Academy of Sciences XDB12030200National Basic Research Program of China 2014CB643504National Natural Science Foundation of China 21334006Supported by the National Basic Research Program of China(No.2014CB643504), the National Natural Science Foundation of China(No.51325303, No.21334006), the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDB12030200)

Figures(6)

  • A high performance flexible polymer solar cells(PSCs) are obtained by using a flexible, transparent composite electrode based on silver nanowire(AgNW) with doctor blading method. The AgNW-based flexible composite film(APA) consisting of AgNWs, polyvinyl butyral(PVB) and Al-doped ZnO(AZO) nanoparticles was readily prepared by multi-layer doctor blading on the poly(ethylene terephthalate)(PET) substrate at moderate temperature. The transparent APA composite film prepared on the PET substrate exhibits superior opto-electrical properties with a high transmittance of 90.90% at 550 nm and a low sheet resistance of 13.01 Ω/sq. The flexible PSCs employing the transparent APA/PET substrate obtain power convention efficiency(PCE) of 5.47%. Moreover, the PCE falls only 14% after bending for 1000 cycles with a bending radius of 5 mm.
  • 加载中
    1. [1]

      You J, Dou L, Yoshimura K. A Polymer Tandem Solar Cell with 10.6% Power Conversion Efficiency[J]. Nat Commun, 2013,4(1446)1446.  

    2. [2]

      Tang C W. Two-Layer Organic Photovoltaic Cell[J]. Appl Phys Lett, 1986,48(2):183-185. doi: 10.1063/1.96937

    3. [3]

      Sun K, Zhao B, Kumar A. Highly Efficient, Inverted Polymer Solar Cells with Indium Tin Oxide Modified with Solution-Processed Zwitterions as the Transparent Cathode[J]. ACS Appl Mater Interfaces, 2012,4(4):2009-2017. doi: 10.1021/am201844q

    4. [4]

      Small C E, Chen S, Subbiah J. High-Efficiency Inverted Dithienogermole-Thienopyrrolodione-Based Polymer Solar Cells[J]. Nat Photon, 2011,6(2):115-120.  

    5. [5]

      Liu Y, Zhao J, Li Z. Aggregation and Morphology Control Enables Multiple Cases of High-Efficiency Polymer Solar Cells[J]. Nat Commun, 2014,5(5)5293.  

    6. [6]

      Liang Y, Xu Z, Xia J. For the Bright Future-Bulk Heterojunction Polymer Solar Cells with Power Conversion Efficiency of 7.4%[J]. Adv Mater, 2010,22(20):E135-138. doi: 10.1002/adma.200903528

    7. [7]

      Søndergaard R, Hösel M, Krebs F C. Roll-to-Roll Fabrication of Large Area Functional Organic Materials[J]. J Polym Sci Part B:Polym Phys, 2013,51(3):16-34.  

    8. [8]

      S ndergaard R, H sel M, Angmo D. Roll-to-Roll Fabrication of Polymer Solar Cells[J]. Mater Today, 2012,15(1/2):36-49.  

    9. [9]

      Forrest S R. The Path to Ubiquitous and Low-Cost Organic Electronic Appliances on Plastic[J]. Nature, 2004,428(6986):911-918. doi: 10.1038/nature02498

    10. [10]

      Cairns D R, Crawford G P. Electromechanical Properties of Transparent Conducting Substrates for Flexible Electronic Displays[J]. Proc IEEE, 2005,93(8):1451-1458. doi: 10.1109/JPROC.2005.851515

    11. [11]

      Ye S, Rathmell A R, Chen Z. Metal Nanowire Networks:The Next Generation of Transparent Conductors[J]. Adv Mater, 2014,26(39):6670-6687. doi: 10.1002/adma.v26.39

    12. [12]

      Inganas O. Organic Photovoltaics Avoiding Indium[J]. Nat Photon, 2011,5(4):201-202. doi: 10.1038/nphoton.2011.46

    13. [13]

      Chipman A. A Commodity No More[J]. Nature, 2007,449(7159):131-131. doi: 10.1038/449131a

    14. [14]

      Tenent R C, Barnes T M, Bergeson J D. Ultrasmooth, Large-Area, High-Uniformity, Conductive Transparent Single-Walled-Carbon-Nanotube Films for Photovoltaics Produced by Ultrasonic Spraying[J]. Adv Mater, 2009,21(31):3210-3216. doi: 10.1002/adma.v21:31

    15. [15]

      Gruner G. Carbon Nanotube Films for Transparent and Plastic Electronics[J]. J Mater Chem, 2006,16(35):3533-3539. doi: 10.1039/b603821m

    16. [16]

      Cao Q, Hu S H, Zhu Z T. Highly Bendable, Transparent Thin-Film Transistors that Use Carbon-Nanotube-Based Conductors and Semiconductors with Elastomeric Dielectrics[J]. Adv Mater, 2006,18(3):304-309. doi: 10.1002/(ISSN)1521-4095

    17. [17]

      Kim K, Bae S H, Toh C T. Ultrathin Organic Solar Cells with Graphene Doped by Ferroelectric Polarization[J]. ACS Appl Mater Interfaces, 2014,6(5):3299-3304. doi: 10.1021/am405270y

    18. [18]

      Hwang J O, Park J S, Choi D S. Workfunction-Tunable, N-Doped Reduced Graphene Transparent Electrodes for High-Performance Polymer Light-Emitting Diodes[J]. ACS Nano, 2012,6(1):159-167. doi: 10.1021/nn203176u

    19. [19]

      Bult J B, Crisp R, Perkins C L. Role of Dopants in Long-Range Charge Carrier Transport for p-Type and n-Type Graphene Transparent Conducting Thin Films[J]. ACS Nano, 2013,7(8):7251-7261. doi: 10.1021/nn402673z

    20. [20]

      Vosgueritchian M, Lipomi D J, Bao Z. Highly Conductive and Transparent PEDOT:PSS Films with a Fluorosurfactant for Stretchable and Flexible Transparent Electrodes[J]. Adv Funct Mater, 2012,22(2):421-428. doi: 10.1002/adfm.201101775

    21. [21]

      Hu Z, Zhang J, Zhu Y. Effects of Solvent-Treated PEDOT:PSS on Organic Photovoltaic Devices[J]. Renew Energy, 2014,62(3):100-105.  

    22. [22]

      Bubnova O, Khan Z U, Wang H. Semi-Metallic Polymers[J]. Nat Mater, 2014,13(2):190-194. doi: 10.1038/nmat3824

    23. [23]

      Rathmell A R, Wiley B J. The Synthesis and Coating of Long, Thin Copper Nanowires to Make Flexible, Transparent Conducting Films on Plastic Substrates[J]. Adv Mater, 2011,23(41):4798-4803. doi: 10.1002/adma.201102284

    24. [24]

      Liang J, Li L, Tong K. Silver Nanowire Percolation Network Soldered with Graphene Oxide at Room Temperature and Its Application for Fully Stretchable Polymer Light Emitting Diodes[J]. ACS Nano, 2014,8(2):1590-1600. doi: 10.1021/nn405887k

    25. [25]

      Im H G, Jung S H, Jin J. Flexible Transparent Conducting Hybrid Film Using a Surface-Embedded Copper Nanowire Network:A Highly Oxidation-Resistant Copper Nanowire Electrode for Flexible Optoelectronics[J]. ACS Nano, 2014,8(10):10973-10979. doi: 10.1021/nn504883m

    26. [26]

      Ghosh D S, Chen T L, Mkhitaryan V. Ultrathin Transparent Conductive Polyimide Foil Embedding Silver Nanowires[J]. ACS Appl Mater Interfaces, 2014,6(23):20943-20948. doi: 10.1021/am505704e

    27. [27]

      Song M, You D S, Lim K. Highly Efficient and Bendable Organic Solar Cells with Solution-Processed Silver Nanowire Electrodes[J]. Adv Funct Mater, 2013,23(34):4177-4184. doi: 10.1002/adfm.v23.34

    28. [28]

      Zhu R, Chung C H, Cha K C. Fused Silver Nanowires with Metal Oxide Nanoparticles and Organic Polymers for Highly Transparent Conductors[J]. ACS Nano, 2011,5(12):9877-9882. doi: 10.1021/nn203576v

    29. [29]

      Gaynor W, Burkhard G F, McGehee M D. Smooth Nanowire/Polymer Composite Transparent Electrodes[J]. Adv Mater, 2011,23(26):2905-2910. doi: 10.1002/adma.v23.26

    30. [30]

      Lee J Y, Connor S T, Cui Y. Solution-Processed Metal Nanowire Mesh Transparent Electrodes[J]. Nano Lett, 2008,8(2):689-692. doi: 10.1021/nl073296g

    31. [31]

      Lee S J, Kim Y H, Kim J K. A Roll-to-Roll Welding Process for Planarized Silver Nanowire Electrodes[J]. Nanoscale, 2014,6(20):11828-11834. doi: 10.1039/C4NR03771E

    32. [32]

      Ho X, Tey J, Liu W. Biaxially Stretchable Silver Nanowire Transparent Conductors[J]. J Appl Phys, 2013,113(4)044311. doi: 10.1063/1.4789795

    33. [33]

      Bergin S M, Chen Y H, Rathmell A R. The Effect of Nanowire Length and Diameter on the Properties of Transparent, Conducting Nanowire Films[J]. Nanoscale, 2012,4(6):1996-2004. doi: 10.1039/c2nr30126a

    34. [34]

      Song T B, Chen Y, Chung C H. Nanoscale Joule Heating and Electromigration Enhanced Ripening of Silver Nanowire Contacts[J]. ACS Nano, 2014,8(3):2804-2811. doi: 10.1021/nn4065567

    35. [35]

      Li J, Zhang W, Li Q. Excitation of Surface Plasmons from Silver Nanowires Embedded in Polymer Nanofibers[J]. Nanoscale, 2015,7(7):2889-2893. doi: 10.1039/C4NR06311B

    36. [36]

      Garnett E C, Cai W, Cha J J. Self-Limited Plasmonic Welding of Silver Nanowire Junctions[J]. Nat Mater, 2012,11(3):241-249. doi: 10.1038/nmat3238

    37. [37]

      Beek W J E, Wienk M M, Kemerink M. Hybrid Zinc Oxide Conjugated Polymer Bulk Heterojunction Solar Cells[J]. J Phys Chem B, 2005,109(19):9505-9516. doi: 10.1021/jp050745x

    38. [38]

      Zhang J, Wang J, Fu Y. Efficient and Stable Polymer Solar Cells with Annealing-Free Solution-Processible NiO Nanoparticles as Anode Buffer Layers[J]. J Mater Chem C, 2014,2(39):8295-8302. doi: 10.1039/C4TC01302F

    39. [39]

      Zhang X, Wu J, Wang J. Low-Temperature All-Solution-Processed Transparent Silver Nanowire-Polymer/AZO Nanoparticles Composite Electrodes for Efficient ITO-Free Polymer Solar Cells[J]. ACS Appl Mater Interfaces, 2016,8(50):34630-34637. doi: 10.1021/acsami.6b11978

    40. [40]

      Zilberberg K, Gasse F, Pagui P. Highly Robust Indium-Free Transparent Conductive Electrodes Based on Composites of Silver Nanowires and Conductive Metal Oxides[J]. Adv Funct Mater, 2014,24(12):1671-1678. doi: 10.1002/adfm.v24.12

  • 加载中
    1. [1]

      Guanghui SUIYanyan CHENG . Application of rice husk-based activated carbon-loaded MgO composite for symmetric supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 521-530. doi: 10.11862/CJIC.20240221

    2. [2]

      Pengyu Dong Yue Jiang Zhengchi Yang Licheng Liu Gu Li Xinyang Wen Zhen Wang Xinbo Shi Guofu Zhou Jun-Ming Liu Jinwei Gao . NbSe2纳米片优化钙钛矿太阳能电池的埋底界面. Acta Physico-Chimica Sinica, 2025, 41(3): 2407025-. doi: 10.3866/PKU.WHXB202407025

    3. [3]

      Yan XUSuzhi LIYan LILushun FENGWentao SUNXinxing LI . Structure variation of cadmium naphthalene-diphosphonates with the changing rigidity of N-donor auxiliary ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 395-406. doi: 10.11862/CJIC.20240226

    4. [4]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    5. [5]

      Nengmin ZHUWenhao ZHUXiaoyao YINSongzhi ZHENGHao LIZeyuan WANGWenhao WEIXuanheng CHENWeihai SUN . Preparation of high-performance CsPbBr3 perovskite solar cells by the aqueous solution solvent method. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1131-1140. doi: 10.11862/CJIC.20240419

    6. [6]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    7. [7]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    8. [8]

      Yipeng Zhou Chenxin Ran Zhongbin Wu . Metacognitive Enhancement in Diversifying Ideological and Political Education within Graduate Course: A Case Study on “Solar Cell Performance Enhancement Technology”. University Chemistry, 2024, 39(6): 151-159. doi: 10.3866/PKU.DXHX202312096

    9. [9]

      Xiaoyao YINWenhao ZHUPuyao SHIZongsheng LIYichao WANGNengmin ZHUYang WANGWeihai SUN . Fabrication of all-inorganic CsPbBr3 perovskite solar cells with SnCl2 interface modification. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 469-479. doi: 10.11862/CJIC.20240309

    10. [10]

      Mingxuan Qi Lanyu Jin Honghe Yao Zipeng Xu Teng Cheng Qi Chen Cheng Zhu Yang Bai . 钙钛矿太阳能电池在反向偏压下的电学失效及稳定性研究进展. Acta Physico-Chimica Sinica, 2025, 41(8): 100088-. doi: 10.1016/j.actphy.2025.100088

    11. [11]

      Tengjiao Wang Tian Cheng Rongjun Liu Zeyi Wang Yuxuan Qiao An Wang Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094

    12. [12]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    13. [13]

      Yikai Wang Xiaolin Jiang Haoming Song Nan Wei Yifan Wang Xinjun Xu Cuihong Li Hao Lu Yahui Liu Zhishan Bo . 氰基修饰的苝二酰亚胺衍生物作为膜厚不敏感型阴极界面材料用于高效有机太阳能电池. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-. doi: 10.3866/PKU.WHXB202406007

    14. [14]

      Fanpeng Meng Fei Zhao Jingkai Lin Jinsheng Zhao Huayang Zhang Shaobin Wang . 优化氮化碳纳米片/球形共轭聚合物S型异质结界面电场以促进析氢反应. Acta Physico-Chimica Sinica, 2025, 41(8): 100095-. doi: 10.1016/j.actphy.2025.100095

    15. [15]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    16. [16]

      Lin Song Dourong Wang Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107

    17. [17]

      Qiaoqiao BAIAnqi ZHOUXiaowei LITang LIUSong LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128

    18. [18]

      Qianwen Han Tenglong Zhu Qiuqiu Lü Mahong Yu Qin Zhong . 氢电极支撑可逆固体氧化物电池性能及电化学不对称性优化. Acta Physico-Chimica Sinica, 2025, 41(1): 2309037-. doi: 10.3866/PKU.WHXB202309037

    19. [19]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    20. [20]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

Metrics
  • PDF Downloads(7)
  • Abstract views(1408)
  • HTML views(707)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return