Citation: SHI Weining, XU Yongqian, SUN Shiguo, LI Hongjuan. Research Progress on Application of Fluorescent Sensors Based on Squaraine Dyes[J]. Chinese Journal of Applied Chemistry, ;2017, 34(12): 1433-1449. doi: 10.11944/j.issn.1000-0518.2017.12.170327 shu

Research Progress on Application of Fluorescent Sensors Based on Squaraine Dyes

  • Corresponding author: XU Yongqian, xuyq@nwsuaf.edu.cn
  • Received Date: 11 September 2017
    Revised Date: 29 September 2017
    Accepted Date: 30 September 2017

    Fund Project: the National Natural Science Foundation of China 21472016the National Natural Science Foundation of China 21676218AAAthe National Natural Science Foundation of ChinaAAA 21476185Supported by the National Natural Science Foundation of China(No.21676218, No.21476185, No.21472016, No.21272030)the National Natural Science Foundation of China 21272030

Figures(20)

  • Due to the unique D-A-D conjugate structure, squaraine dyes possess strong absorption and fluorescence emission in the visible and near infrared regions. As the fluorophore of near infrared fluorescent probes, it has been applied for detection of proteins, amino acids and small biological molecules in vivo, environmental pollutants and so on. In this paper, we reviewed the application of squaraine dyes in the detection of proteins, amino acids, small molecules, cations and other substances according to the work of our group in these years.
  • 加载中
    1. [1]

      Guo Z Q, Park S, Yoon J Y. Recent Progress in the Development of Near-Infrared Fluorescent Probes for Bioimaging Applications[J]. Chem Soc Rev, 2014,43(1):16-29. doi: 10.1039/C3CS60271K

    2. [2]

      Yuan L, Lin W Y, Zheng K B. Far-red to Near Infrared Analyte-Responsive Fluorescent Probes Based on Organic Fluorophore Platforms for Fluorescence Imaging[J]. Chem Soc Rev, 2013,42(2):622-661. doi: 10.1039/C2CS35313J

    3. [3]

      Takeda N, Parkinson B A. The Relationship Between Squaraine Dye Surface Morphology and Sensitization Behavior on SnS 2 Electrodes[J]. Electrochim Acta, 2000,45(28):4559-4564. doi: 10.1016/S0013-4686(00)00607-1

    4. [4]

      Tam A C. Optoacoustic Determination of Photocarrier Generation Efficiencies of Dye Films[J]. Appl Phys Lett, 1980,37(11):978-981. doi: 10.1063/1.91725

    5. [5]

      Law K Y, Bailey F C. Squaraine Chemistry:Effect of Synthesis on the Morphological and Xerographic Properties of Photoconductive Squaraines[J]. J Imaging Sci Technol, 1987,31(4):172-177.

    6. [6]

      Merritt V Y, Hovel H J. Organic Solar Cells of Hydroxy Squarylium[J]. Appl Phys Lett, 1976,29(7):414-415. doi: 10.1063/1.89101

    7. [7]

      Loutfy R O, Hsiao C K, Kazmaier P M. Photoconductivity of Organic Particle Dispersions-Squaraine Dyes[J]. Photogr Sci Eng, 1983,27(1):5-9.

    8. [8]

      Gravesteijn D J, Steenbergen C, Veen J V D. Single Wavelength Optical Recording in Pure, Solvent Coated Infrared Dye Layers[J]. Proc SPIE Int Soc Opt Eng, 1983,420(6):327-331.  

    9. [9]

      Dirk C W, Kuzyk M G. Squarylium Dye-doped Polymer Systems as Quadratic Electrooptic Materials[J]. Chem Mater, 1990,2(1):4-6. doi: 10.1021/cm00007a002

    10. [10]

      Kuzyk M G, Paek U C, Dirk C W. Guest-host Polymer Fibers for Nonlinear Optics[J]. Appl Phys Lett, 1991,59(8):902-904. doi: 10.1063/1.105271

    11. [11]

      Chen C T, Marder S R, Cheng L T. Molecular First Hyperpolarizabilities of a New Class of Asymmetric Squaraine Dyes[J]. J Chem Soc, Chem Commun, 1994(3):259-260. doi: 10.1039/c39940000259

    12. [12]

      Jyothish K, Hariharan M, Ramaiah D. Chiral Supramolecular Assemblies of a Squaraine Dye in Solution and Thin Films:Concentration, Temperature, and Solvent-induced Chirality Inversion[J]. Chem-Eur J, 2007,13(20):5944-5951. doi: 10.1002/(ISSN)1521-3765

    13. [13]

      Zhang D, Zhao Y X, Qiao Z Y. Nano-confined Squaraine Dye Assemblies:New Photoacoustic and Near-Infrared Fluorescence Dual-Modular Imaging Probes in vivo[J]. Bioconjugate Chem, 2014,25(11):2021-2029. doi: 10.1021/bc5003983

    14. [14]

      Johnson J R, Fu N, Arunkumar E. Squaraine Rotaxanes:Superior Substitutes for Cy-5 in Molecular Probes for Near-Infrared Fluorescence Cell Imaging[J]. Angew Chem, 2007,119(29):5624-5627. doi: 10.1002/(ISSN)1521-3757

    15. [15]

      Gassensmith J J, Arunkumar E, Barr L. Self-Assembly of Fluorescent Inclusion Complexes in Competitive Media Including the Interior of Living Cells[J]. J Am Chem Soc, 2007,129(48):15054-15059. doi: 10.1021/ja075567v

    16. [16]

      Thomas J, Sherman D B, Amiss T J. Synthesis and Biosensor Performance of a Near-IR Thiol-Reactive Fluorophore Based on Benzothiazolium Squaraine[J]. Bioconjugate Chem, 2007,18(6):1841-1846. doi: 10.1021/bc700146r

    17. [17]

      Ros-Lis J V, García B, Jiménez D. Squaraines as Fluoro-Chromogenic Probes for Thiol-Containing Compounds and Their Application to the Detection of Biorelevant Thiols[J]. J Am Chem Soc, 2004,126(13):4064-4065. doi: 10.1021/ja031987i

    18. [18]

      Snee P T, Somers R C, Nair G. A Ratiometric CdSe/ZnS Nanocrystal pH Sensor[J]. J Am Chem Soc, 2006,128(41):13320-13321. doi: 10.1021/ja0618999

    19. [19]

      Arunkumar E, Chithra P, Ajayaghosh A. A Controlled Supramolecular Approach Toward Cation-Specific Chemosensors:Alkaline Earth Metal Ion-Driven Exciton Signaling in Squaraine Tethered Podands[J]. J Am Chem Soc, 2004,126(21):6590-6598. doi: 10.1021/ja0393776

    20. [20]

      Das S, Thomas K G, Ramanathan R. Photochemistry of Squaraine Dyes.6.Solvent Hydrogen Bonding Effects on the Photophysical Properties of Bis (Benzothiazolylidene) Squaraines[J]. J Phys Chem, 1993,97(51):13625-13628. doi: 10.1021/j100153a033

    21. [21]

      Zhai D T, Xu W, Zhang L Y. The Role of "Disaggregation" in Optical Probe Development[J]. Chem Soc Rev, 2014,43(8):2402-2411. doi: 10.1039/c3cs60368g

    22. [22]

      Li B H, Li W W, Xu Y Q. A Simple Approach for the Discrimination of Surfactants Based on the Control of Squaraine Aggregation[J]. Chem Commun, 2015,51(78):14652-14655. doi: 10.1039/C5CC06086A

    23. [23]

      Volkova K D, Kovalska V B, Tatarets A L. Spectroscopic Study of Squaraines as Protein-Sensitive Fluorescent Dyes[J]. Dyes Pigm, 2007,72(3):285-292. doi: 10.1016/j.dyepig.2005.09.007

    24. [24]

      Wang B S, Fan J L, Sun S G. 1-(Carbamoylmethyl)-3H-indolium Squaraine Dyes:Synthesis, Spectra, Photo-Stability and Association with BSA[J]. Dyes Pigm, 2010,85(1):43-50.

    25. [25]

      Xu Y Q, Li Z Y, Malkovskiy A. Aggregation Control of Squaraines and Their Use as Near-Infrared Fluorescent Sensors for Protein[J]. J Phys Chem B, 2010,114(25):8574-8580. doi: 10.1021/jp1029536

    26. [26]

      Wang D C, Fan J L, Gao X Q. Carboxyl BODIPY Dyes from Bicarboxylic Anhydrides:One-Pot Preparation, Spectral Properties, Photostability, and Biolabeling[J]. J Org Chem, 2009,74(20):7675-7683. doi: 10.1021/jo901149y

    27. [27]

      Konermann L. Protein Unfolding and Denaturants. In Encyclopedia of Life Sciences[M]. Chichester:John Wiley & Sons Ltd, 2007.

    28. [28]

      Xu Y Q, Malkovskiy A, Pang Y. A Graphene Binding-Promoted Fluorescence Enhancement for Bovine Serum Albumin Recognition[J]. Chem Commun, 2011,47(23):6662-6664. doi: 10.1039/c1cc11355k

    29. [29]

      Stankovich S, Dikin D A, Piner R D. Synthesis of Graphene-Based Nanosheets via Chemical Reduction of Exfoliated Graphite Oxide[J]. Carbon, 2007,45(7):1558-1565. doi: 10.1016/j.carbon.2007.02.034

    30. [30]

      Paredes J I, Villar-Rodil S, Martiínez-Alonso A. Graphene Oxide Dispersions in Organic Solvents[J]. Langmuir, 2008,24(19):10560-10564. doi: 10.1021/la801744a

    31. [31]

      Xu Y Q, Liu Q, Li X P. A Zwitterionic Squaraine Dye with a Large Stokes Shift for in vivo and Site-Selective Protein Sensing[J]. Chem Commun, 2012,48(92):11313-11315. doi: 10.1039/c2cc36285f

    32. [32]

      Jisha V S, Arun K T, Hariharan M. Site-selective Binding and Dual Mode Recognition of Serum Albumin by a Squaraine Dye[J]. J Am Chem Soc, 2006,128(18):6024-6025. doi: 10.1021/ja061301x

    33. [33]

      Zhang S G. Fabrication of Novel Biomaterials Through Molecular Self-Assembly[J]. Nat Biotechnol, 2003,21(10)1171. doi: 10.1038/nbt874

    34. [34]

      Astruc D, Boisselier E, Ornelas C. Dendrimers Designed for Functions:From Physical, Photophysical, and Supramolecular Properties to Applications in Sensing, Catalysis, Molecular Electronics, Photonics, and Nanomedicine[J]. Chem Rev, 2010,110(4):1857-1959. doi: 10.1021/cr900327d

    35. [35]

      Molla M R, Prasad P, Thayumanavan S. Protein-induced Supramolecular Disassembly of Amphiphilic Polypeptide Nanoassemblies[J]. J Am Chem Soc, 2015,137(23):7286-7289. doi: 10.1021/jacs.5b04285

    36. [36]

      Zhang Y W, Yue X L, Kim B. Bovine Serum Albumin Nanoparticles with Fluorogenic Near-IR-emitting Squaraine Dyes[J]. ACS Appl Mater Interfaces, 2013,5(17):8710-8717. doi: 10.1021/am402361w

    37. [37]

      Wang H, Zhuang J M, Raghupathi K R. A Supramolecular Dissociation Strategy for Protein Sensing[J]. Chem Commun, 2015,51(97):17265-17268. doi: 10.1039/C5CC07408H

    38. [38]

      Fan X P, He Q Y, Sun S G. Nanoparticles Self-Assembled from Multiple Interactions:A Novel Near-Infrared Fluorescent Sensor for the Detection of Serum Albumin in Human Sera and Turn-On Live-Cell Imaging[J]. Chem Commun, 2016,52(6):1178-1181. doi: 10.1039/C5CC08154H

    39. [39]

      Grandini P, Mancin F, Tecilla P. Exploiting the Self-Assembly Strategy for the Design of Selective CuⅡ Ion Chemosensors[J]. Angew Chem Int Ed, 1999,38(20):3061-3064. doi: 10.1002/(ISSN)1521-3773

    40. [40]

      Mancin F, Scrimin P, Tecilla P. Amphiphilic Metalloaggregates:Catalysis, Transport, and Sensing[J]. Coord Chem Rev, 2009,253(17):2150-2165.  

    41. [41]

      Pallavicini P, Diaz-Fernandez Y A, Pasotti L. Micelles as Nanosized Containers for the Self-assembly of Multicomponent Fluorescent Sensors[J]. Coord Chem Rev, 2009,253(17):2226-2240.  

    42. [42]

      Azagarsamy M A, Yesilyurt V, Thayumanavan S. Disassembly of Dendritic Micellar Containers due to Protein Binding[J]. J Am Chem Soc, 2010,132(13):4550-4551. doi: 10.1021/ja100746d

    43. [43]

      Ryu J H, Roy R, Ventura J. Redox-Sensitive Disassembly of Amphiphilic Copolymer Based Micelles[J]. Langmuir, 2010,26(10):7086-7092. doi: 10.1021/la904437u

    44. [44]

      González D C, Savariar E N, Thayumanavan S. Fluorescence Patterns from Supramolecular Polymer Assembly and Disassembly for Sensing Metallo-and Nonmetalloproteins[J]. J Am Chem Soc, 2009,131(22):7708-7716. doi: 10.1021/ja900579g

    45. [45]

      Savariar E N, Ghosh S, Thayumanavan S. Disassembly of Noncovalent Amphiphilic Polymers with Proteins and Utility in Pattern Sensing[J]. J Am Chem Soc, 2008,130(16):5416-5417. doi: 10.1021/ja800164z

    46. [46]

      Sandanaraj B S, Demont R, Thayumanavan S. Generating Patterns for Sensing Using a Single Receptor Scaffold[J]. J Am Chem Soc, 2007,129(12):3506-3507. doi: 10.1021/ja070229f

    47. [47]

      Nakahara Y, Kida T, Nakatsuji Y. A Novel Fluorescent Indicator for Ba2+ in Aqueous Micellar Solutions[J]. Chem Commun, 2004(2):224-225. doi: 10.1039/b311613a

    48. [48]

      Morikawa M, Yoshihara M, Endo T. ATP as Building Blocks for the Self-Assembly of Excitonic Nanowires[J]. J Am Chem Soc, 2005,127(5):1358-1359. doi: 10.1021/ja043844h

    49. [49]

      Xu Y Q, Malkovskiy A, Wang Q M. Molecular Assembly of a Squaraine Dye with Cationic Surfactant and Nucleotides:Its Impact on Aggregation and Fluorescence Response[J]. Org Biomol Chem, 2011,9(8):2878-2884. doi: 10.1039/c0ob01061h

    50. [50]

      Bush K T, Keller S H, Nigam S K. Genesis and Reversal of the Ischemic Phenotype in Epithelial Cells[J]. J Clin Invest, 2000,106(5):621-626. doi: 10.1172/JCI10968

    51. [51]

      Di Monte D A, Lavasani M, Manning-Bog A B. Environmental Factors in Parkinson's Disease[J]. Neurotoxicology, 2002,23(4):487-502.  

    52. [52]

      Feng R Z, Shi W N, Wang D J. Hierarchical Self-Assembly of Squaraine and Silica Nanoparticle Functionalized with Cationic Coordination Sites for Near Infrared Detection of ATP[J]. Sci Rep, 2017,7.

    53. [53]

      Xu Y Q, Li B H, Han P. Near-Infrared Fluorescent Detection of Glutathione via Reaction-Promoted Assembly of Squaraine-Analyte Adducts[J]. Analyst, 2013,138(4):1004-1007. doi: 10.1039/c2an36475a

    54. [54]

      He Q Y, Fan X P, Sun S G. Highly Selective Turn-On Detection of (strept) Avidin Based on Self-Assembled Near-Infrared Fluorescent Probes[J]. RSC Adv, 2015,5(48):38571-38576. doi: 10.1039/C5RA07185B

    55. [55]

      Xu Y Q, Li B H, Xiao L L. A Colorimetric and Near-Infrared Fluorescent Probe with High Sensitivity and Selectivity for Acid Phosphatase and Inhibitor Screening[J]. Chem Commun, 2014,50(63):8677-8680. doi: 10.1039/C3CC49254K

    56. [56]

      Zhou Q, Swager T M. Method for Enhancing the Sensitivity of Fluorescent Chemosensors:Energy Migration in Conjugated Polymers[J]. J Am Chem Soc, 1995,117(26):7017-7018. doi: 10.1021/ja00131a031

    57. [57]

      Tu J, Xiao L L, Jiang Y F. Near-Infrared Fluorescent Turn-On Detection of Paraquat Using an Assembly of Squaraine and Surfactants[J]. Sens Actuators B-Chem, 2015,215:382-387. doi: 10.1016/j.snb.2015.04.015

    58. [58]

      Tu J, Sun S G, Xu Y Q. A Novel Self-Assembled Platform for the Ratiometric Fluorescence Detection of Spermine[J]. Chem Commun, 2016,52(5):1040-1043. doi: 10.1039/C5CC07861J

    59. [59]

      Feng R Z, Xu Y Q, Zhao H W. A Novel Platform Self-Assembled from Squaraine-Embedded Zn(Ⅱ) Complexes for Selective Monitoring of ATP and Its Level Fluctuation in Mitotic Cells[J]. Analyst, 2016,141(11):3219-3223. doi: 10.1039/C6AN00646A

    60. [60]

      Xu Y Q, Li B H, Xiao L L. The Sphere-To-Rod Transition of Squaraine-Embedded Micelles:A Self-Assembly Platform Displays a Distinct Response to Cysteine and Homocysteine[J]. Chem Commun, 2013,49(70):7732-7734. doi: 10.1039/c3cc43223h

    61. [61]

      Xu Y Q, Li B H, Li W W. "ICT-not-quenching" Near Infrared Ratiometric Fluorescent Detection of Picric Acid in Aqueous Media[J]. Chem Commun, 2013,49(42):4764-4766. doi: 10.1039/c3cc41994k

    62. [62]

      Xu Y Q, Zhang D, Li B H. A Near Infrared Fluorescent Dye for Trivalent Ions Sensing and Working as a Molecular Keypad Lock[J]. RSC Adv, 2014,4(23):11634-11639. doi: 10.1039/c3ra47635a

    63. [63]

      Fan X P, Zhang D, Li H J. A BSA-Squaraine Hybrid System for Selectively Detecting Ag+ in Absolute PBS and Sequential Construction of Logic Functions[J]. Sensor Actuators B-Chem, 2017,245:290-296. doi: 10.1016/j.snb.2017.01.122

  • 加载中
    1. [1]

      Jinghan ZHANGGuanying CHEN . Progress in the application of rare-earth-doped upconversion nanoprobes in biological detection. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2335-2355. doi: 10.11862/CJIC.20240249

    2. [2]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    3. [3]

      Han ZHANGJianfeng SUNJinsheng LIANG . Hydrothermal synthesis and luminescent properties of broadband near-infrared Na3CrF6 phosphor. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 349-356. doi: 10.11862/CJIC.20240098

    4. [4]

      Qi Wang Yicong Gao Feng Lu Quli Fan . Preparation and Performance Characterization of the Second Near-Infrared Phototheranostic Probe: A New Design and Teaching Practice of Polymer Chemistry Comprehensive Experiment. University Chemistry, 2024, 39(11): 342-349. doi: 10.12461/PKU.DXHX202404141

    5. [5]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    6. [6]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    7. [7]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    8. [8]

      Jiahui CHENTingting ZHENGXiuyun ZHANGWei LÜ . Research progress of near-infrared absorption inorganic nanomaterials in photothermal and photodynamic therapy of tumors. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2396-2414. doi: 10.11862/CJIC.20240106

    9. [9]

      Xinyi Hong Tailing Xue Zhou Xu Enrong Xie Mingkai Wu Qingqing Wang Lina Wu . Non-Site-Specific Fluorescent Labeling of Proteins as a Chemical Biology Experiment. University Chemistry, 2024, 39(4): 351-360. doi: 10.3866/PKU.DXHX202310010

    10. [10]

      Qin Hou Jiayi Hou Aiju Shi Xingliang Xu Yuanhong Zhang Yijing Li Juying Hou Yanfang Wang . Preparation of Cuprous Iodide Coordination Polymer and Fluorescent Detection of Nitrite: A Comprehensive Chemical Design Experiment. University Chemistry, 2024, 39(8): 221-229. doi: 10.3866/PKU.DXHX202312056

    11. [11]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    12. [12]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    13. [13]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    14. [14]

      Xinyu ZENGGuhua TANGJianming OUYANG . Inhibitory effect of Desmodium styracifolium polysaccharides with different content of carboxyl groups on the growth, aggregation and cell adhesion of calcium oxalate crystals. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1563-1576. doi: 10.11862/CJIC.20230374

    15. [15]

      Yanyang Li Zongpei Zhang Kai Li Shuangquan Zang . Ideological and Political Design for the Comprehensive Experiment of the Synthesis and Aggregation-Induced Emission (AIE) Performance Study of Salicylaldehyde Schiff-Base. University Chemistry, 2024, 39(2): 105-109. doi: 10.3866/PKU.DXHX202307020

    16. [16]

      Di Yang Jiayi Wei Hong Zhai Xin Wang Taiming Sun Haole Song Haiyan Wang . Rapid Detection of SARS-CoV-2 Using an Innovative “Magic Strip”. University Chemistry, 2024, 39(4): 373-381. doi: 10.3866/PKU.DXHX202312023

    17. [17]

      . . Chinese Journal of Inorganic Chemistry, 2024, 40(12): 0-0.

    18. [18]

      Qilong Fang Yiqi Li Jiangyihui Sheng Quan Yuan Jie Tan . Magical Pesticide Residue Detection Test Strips: Aptamer-based Lateral Flow Test Strips for Organophosphorus Pesticide Detection. University Chemistry, 2024, 39(5): 80-89. doi: 10.3866/PKU.DXHX202310004

    19. [19]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    20. [20]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

Metrics
  • PDF Downloads(12)
  • Abstract views(2746)
  • HTML views(523)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return