Citation: JIANG Ya'nan, TANG Lijun, BIAN Yanjiang, ZHONG Keli, HOU Shuhua. A Quinazolinone Derivative-based Fluorescent Probe for Hypochlorite Ion Recognition[J]. Chinese Journal of Applied Chemistry, ;2017, 34(12): 1462-1467. doi: 10.11944/j.issn.1000-0518.2017.12.170316 shu

A Quinazolinone Derivative-based Fluorescent Probe for Hypochlorite Ion Recognition

  • Corresponding author: TANG Lijun, ljtang@bhu.edu.cn
  • Received Date: 4 September 2017
    Revised Date: 19 September 2017
    Accepted Date: 28 September 2017

    Fund Project: the National Natural Science Foundation of China U1608222Program for Liaoning Excellent Talents in University LR2015001Supported by the National Natural Science Foundation of China(No.21476029, No.U1608222), Program for Liaoning Excellent Talents in University(No.LR2015001)the National Natural Science Foundation of China 21476029

Figures(7)

  • Hypochlorite(ClO-) displays essential roles in human immune system, the detection of which has aroused extensive attention. Herein, a hydrazone type fluorescent probe(HEMQ) that containing quinazolinone skeleton was designed and synthesized, and the structure of HEMQ was characterized by 1H NMR, 13C NMR, and HRMS analysis. In V(ethanol):V(water)=1:1(c(PBS)=0.02 mol/L, pH=8.7) solution, probe HEMQ exhibits rapid response and good selectivity toward ClO- through distinct fluorescence quenching. HEMQ displays good sensitivity to ClO- with a detection limit of 1.0×10-4 mol/L. In addition, ClO- can induce a color change from yellow to colorless of the probe solution, thus, probe HEMQ can act as a colorimetric and florescent dual-channel ClO- probe.
  • 加载中
    1. [1]

      Lambeth J D. Nox Enzymes, ROS, and Chronic Disease:An Example of Antagonistic Pleiotropy[J]. Free Radical Biol Med, 2007,43(3):332-347. doi: 10.1016/j.freeradbiomed.2007.03.027

    2. [2]

      Sugiyama S, Okada Y, Sukhova G K. Macrophage Myeloperoxidase Regulation by Granulocyte Macrophage Colony-Stimulating Factor in Human Atherosclerosis and Implications in Acute Coronary Syndromes[J]. Am J Pathol, 2001,158(3):879-891. doi: 10.1016/S0002-9440(10)64036-9

    3. [3]

      Daugherty A, Dunn J L, Rateri D L. Myeloperoxidase, a Catalyst for Lipoprotein Oxidation, is Expressed in Human Atherosclerotic Lesions[J]. J Clin Invest, 1994,94(1):437-444. doi: 10.1172/JCI117342

    4. [4]

      Maruyama Y, Lindholm B, Stenvinkel P. Inflammation and Oxidative Stress in ESRD-The Role of Myeloperoxidase[J]. J Nephrol, 2004,17(8):72-76.  

    5. [5]

      Hammerschmidt S, Buchler N, Wahn H. Tissue Lipid Peroxidation and Reduced Glutathione Depletion in Hypochlorite-Induced Lung Injury[J]. Chest, 2002,121(2):573-581. doi: 10.1378/chest.121.2.573

    6. [6]

      Vogel A I. A Text Book of Quantitative Chemical Analysis[M]. Longman:London, 1989.

    7. [7]

      LI Weiying, ZHANG Ming, ZHANG Yongji. Evaluation of Chlorine Sensors in Top Water System[J]. J Tongji Univ, 2008,36(7):946-950.  

    8. [8]

      WANG Yanbao, ZHAO Baoxiang. Recent Progress in Fluorescent Probes for the Detection of Hypochlorous Acid[J]. Chinese J Org Chem, 2016,36(7):1539-1554.  

    9. [9]

      Liu S R, Vedamalai M, Wu S P. Hypochlorous Acid Turn-on Boron Dipyrromethene Probe Based on Oxidation of Methyl Phenyl Sulfide[J]. Anal Chim Acta, 2013,800(24):71-76.  

    10. [10]

      Zhu H, Fan J L, Wang J Y. An "Enhanced PET"-Based Fluorescent Probe with Ultrasensitivity for Imaging Basal and Elesclomol-Induced HClO in Cancer Cells[J]. J Am Chem Soc, 2014,136(37):12820-12823. doi: 10.1021/ja505988g

    11. [11]

      Hu J J, Wong N K, Gu Q S. HKOCl-2 Series of Green BODIPY-Based Fluorescent Probes for Hypochlorous Acid Detection and Imaging in Live Cells[J]. Org Lett, 2014,16(13)35443547.  

    12. [12]

      Venkatesan P, Wu S P. A Turn-on Fluorescent Probe for Hypochlorous Acid Based on the Oxidation of Diphenyl Telluride[J]. Analyst, 2015,140(4):1349-1355. doi: 10.1039/C4AN02116A

    13. [13]

      Zhang Z, Zheng Y, Huang W. Sensitive and Selective Off on Rhodamine Hydrazide Fluorescent Chemosensor for Hypochlorous Acid Detection and Bioimaging[J]. Talanta, 2011,85(1):779-786. doi: 10.1016/j.talanta.2011.04.078

    14. [14]

      Koide Y, Urano Y, Hanaoka K. Development of an Si-Rhodamine-Based Far-Red to Near-Infrared Fluorescence Probe Selective for Hypochlorous Acid and Its Applications for Biological Imaging[J]. J Am Chem Soc, 2011,133(15):5680-5682. doi: 10.1021/ja111470n

    15. [15]

      Best Q A, Sattenapally N, Dyer D J. pH-Dependent Si-Fluorescein Hypochlorous Acid Fluorescent Probe:Spirocycle Ring-Opening and Excess Hypochlorous Acid-Induced Chlorination[J]. J Am Chem Soc, 2013,135(36):13365-13370. doi: 10.1021/ja401426s

    16. [16]

      Chen X Q, Lee K A, Ren X T. Synthesis of a Highly HOCl-Selective Fluorescent Probe and Its Use for Imaging HOCl in Cells and Organisms[J]. Nat Protoc, 2016,11(7):1219-1228. doi: 10.1038/nprot.2016.062

    17. [17]

      Lv J, Wang F, Wei T W. Highly Sensitive and Selective Fluorescent Probes for the Detection of HOCl/OCl- Based on Fluorescein Derivatives[J]. Ind Eng Chem Res, 2017,56(13)37573764.

    18. [18]

      Chang C, Wang F, Qiang J. Benzothiazole-based Fluorescent Sensor for Hypochlorite Detection and Its Application for Biological Imaging[J]. Sens Actuators B, 2017,243:22-28. doi: 10.1016/j.snb.2016.11.123

    19. [19]

      Li D, Feng Y, Lin J. A Mitochondria-targeted Two-photon Fluorescent Probe for Highly Selective and Rapid Detection of Hypochlorite and Its Bio-imaging in Living Cells[J]. Sens Actuators B, 2016,222:483-491. doi: 10.1016/j.snb.2015.08.098

    20. [20]

      Yu S Y, Hsu C Y, Chen W C. A Hypochlorous Acid Turn-on Fluorescent Probe Based on HOCl-promoted Oxime Oxidation and Its Application in Cell Imaging[J]. Sens Actuators B, 2014,196:203-207. doi: 10.1016/j.snb.2014.01.121

    21. [21]

      Yang Y K, Cho J K, Lee J. A Rhodamine-Hydroxamic Acid-Based Fluorescent Probe for Hypochlorous Acid and Its Applications to Biological Imagings[J]. Org Lett, 2009,11(4):859-861. doi: 10.1021/ol802822t

    22. [22]

      Li X H, Zhang G X, Zhang D Q. 4, 5-Dimethylthio-4'-[2-(9-anthryloxy)ethylthio]tetrathiafulvalene, a Highly Selective and Sensitive Chemiluminescence Probe for Singlet Oxygen[J]. J Am Chem Soc, 2004,126(37):11543-11548. doi: 10.1021/ja0481530

    23. [23]

      Hidehiko N, Erika S, Nobuo I. Endogenous and New Synthetic Antioxidants for Peroxynitrite:Selective Inhibitory Effect of 5-Methoxytryptamine and Lipoic Acid on Tyrosine Nitration by Peroxynitrite[J]. Antioxid Redox Signaling, 1999,1(2):239-244. doi: 10.1089/ars.1999.1.2-239

    24. [24]

      Tang L J, Ding S L, Yan X. A 2-(2'-Hydroxyphenyl)quinazolin-4(3H)-one Derived Enaminone for Fluorescence Detection of Pd2+[J]. Inorg Chem Commun, 2016,74:35-38. doi: 10.1016/j.inoche.2016.10.041

    25. [25]

      Belal A A M, Zayed M A, El-Desawy M. Structure Investigation of Three Hydrazones Schiff's Bases by Spectroscopic, Thermal and Molecular Orbital Calculations and Their Biological Activities[J]. Spectrochim Acta Part A, 2015,138:49-57. doi: 10.1016/j.saa.2014.10.091

    26. [26]

      Lin W, Yuan L, Cao Z. A Sensitive and Selective Fluorescent Thiol Probe in Water Based on the Conjugate 1, 4-Addition of Thiols to α, β-Unsaturated Ketones[J]. Chem Eur J, 2009,15(20):5096-5103. doi: 10.1002/chem.v15:20

    27. [27]

      Chen W C, Venkatesan P, Wu S P. A Turn-on Fluorescent Probe for Hypochlorous Acid Based on HOCl-Promoted Removal of the CN Bond in BODIPY-hydrazone[J]. New J Chem, 2015,39(9):6892-6898. doi: 10.1039/C5NJ01083G

  • 加载中
    1. [1]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    2. [2]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    3. [3]

      Yu SUXinlian FANYao YINLin WANG . From synthesis to application: Development and prospects of InP quantum dots. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2105-2123. doi: 10.11862/CJIC.20240126

    4. [4]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    5. [5]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    6. [6]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    7. [7]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    8. [8]

      Yuan ZHUXiaoda ZHANGShasha WANGPeng WEITao YI . Conditionally restricted fluorescent probe for Fe3+ and Cu2+ based on the naphthalimide structure. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 183-192. doi: 10.11862/CJIC.20240232

    9. [9]

      Hong CAIJiewen WUJingyun LILixian CHENSiqi XIAODan LI . Synthesis of a zinc-cobalt bimetallic adenine metal-organic framework for the recognition of sulfur-containing amino acids. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 114-122. doi: 10.11862/CJIC.20240382

    10. [10]

      Jinghan ZHANGGuanying CHEN . Progress in the application of rare-earth-doped upconversion nanoprobes in biological detection. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2335-2355. doi: 10.11862/CJIC.20240249

    11. [11]

      Yan ZHAOXiaokang JIANGZhonghui LIJiaxu WANGHengwei ZHOUHai GUO . Preparation and fluorescence properties of Eu3+-doped CaLaGaO4 red-emitting phosphors. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1861-1868. doi: 10.11862/CJIC.20240242

    12. [12]

      Xinyu Liu Weiran Hu Zhengkai Li Wei Ji Xiao Ni . Algin Lab: Surging Luminescent Sea. University Chemistry, 2024, 39(5): 396-404. doi: 10.3866/PKU.DXHX202312021

    13. [13]

      Qi Wang Yicong Gao Feng Lu Quli Fan . Preparation and Performance Characterization of the Second Near-Infrared Phototheranostic Probe: A New Design and Teaching Practice of Polymer Chemistry Comprehensive Experiment. University Chemistry, 2024, 39(11): 342-349. doi: 10.12461/PKU.DXHX202404141

    14. [14]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    15. [15]

      Chun-Lin Sun Yaole Jiang Yu Chen Rongjing Guo Yongwen Shen Xinping Hui Baoxin Zhang Xiaobo Pan . Construction, Performance Testing, and Practical Applications of a Home-Made Open Fluorescence Spectrometer. University Chemistry, 2024, 39(5): 287-295. doi: 10.3866/PKU.DXHX202311096

    16. [16]

      Jianjun Liu Xue Yang Chi Zhang Xueyu Zhao Zhiwei Zhang Yongmei Chen Qinghong Xu Shao Jin . Preparation and Fluorescence Characterization of CdTe Semiconductor Quantum Dots. University Chemistry, 2024, 39(7): 307-315. doi: 10.3866/PKU.DXHX202311031

    17. [17]

      Zishuo Yi Peng Liu Yan Xu . Fluorescent “Chameleon”: A Popular Science Experiment Based on Dynamic Luminescence. University Chemistry, 2024, 39(9): 304-310. doi: 10.12461/PKU.DXHX202311079

    18. [18]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    19. [19]

      Zijuan LIXuan LÜJiaojiao CHENHaiyang ZHAOShuo SUNZhiwu ZHANGJianlong ZHANGYanling MAJie LIZixian FENGJiahui LIU . Synthesis of visual fluorescence emission CdSe nanocrystals based on ligand regulation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 308-320. doi: 10.11862/CJIC.20240138

    20. [20]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

Metrics
  • PDF Downloads(2)
  • Abstract views(946)
  • HTML views(95)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return