Citation: LUO Xiao, HE Haihong, YANG Youjun. Research Pregress on Synthesis of Xanthene Dyes[J]. Chinese Journal of Applied Chemistry, ;2017, 34(12): 1403-1412. doi: 10.11944/j.issn.1000-0518.2017.12.170308 shu

Research Pregress on Synthesis of Xanthene Dyes

  • Corresponding author: YANG Youjun, youjunyang@ecust.edu.cn
  • Received Date: 31 August 2017
    Revised Date: 25 September 2017
    Accepted Date: 28 September 2017

    Fund Project: the National Natural Science Foundation of China 21372080the National Natural Science Foundation of China 21572061Supported by the National Natural Science Foundation of China(No.21372080, No.21572061)

Figures(10)

  • Xanthene dyes are a series of brilliant fluorescent dyes exhibiting superior photophysical properties, which facilitate their applications in various field. Traditionally, they are prepared via acid-catalyzed condensations between electron-rich resorcinol(m-aminophenols) and phthalic anhydride. Recently, structurally complicated xanthenes are often in need for bioimaging applications and not readily accessed with the aforementioned methods. This has promoted the development of novel pathways for their synthesis, which are summarized in this review. The scope and limitations of each methods are briefly discussed.
  • 加载中
    1. [1]

      Baeyer A. Uber Ein Neue Klasse von Farbstoffen(On a New Class of Dyes)[J]. Ber Dtsch Chem Ges, 1871,4:555-558. doi: 10.1002/(ISSN)1099-0682

    2. [2]

      Noelting E, Dziewobski K. Zur Kenntniss der Rhodamine[J]. Ber Dtsch Chem Ges, 1905,38:3516-3527. doi: 10.1002/(ISSN)1099-0682

    3. [3]

      Ho D T, Schlosser P, Houghton R W. Comparison of SF 6 and Fluorescein as Tracers for Measuring Transport Processes in a Large Tidal River[J]. J Environ Eng, 2006,132(12):1664-1669. doi: 10.1061/(ASCE)0733-9372(2006)132:12(1664)

    4. [4]

      Robinson E, MacLeod J A, Lapple C E. A Meteorological Tracer Technique Using Uranine Dye[J]. J Atmos Sci, 2010,16(1):63-67.

    5. [5]

      Wu T X, Liu G M, Zhao J C. Photoassisted Degradation of Dye Pollutants.V.Self-Photosensitized Oxidative Transformation of Rhodamine B Under Visible Light Irradiation in Aqueous TiO2 Dispersions[J]. J Phys Chem B, 1998,102(30):5845-5851. doi: 10.1021/jp980922c

    6. [6]

      Mayer U, Oberlinner A. Rhodamine Dyes:US, 4647675[P]. 1987-03-03.

    7. [7]

      Folker K, Fritz M. Water-Soluble Reactive Xanthene Dyestuffs and Process for Preparing Them:US, 3888862[P]. 1975-06-10.

    8. [8]

      Nestmann E R, Douglas G R, Matula T I. Mutagenic Activity of Rhodamine Dyes and Their Impurities as Detected by Mutation Induction in Salmonella and DNA Damage in Chinese Hamster Ovary Cells[J]. Cancer Res, 1979,39:4412-4417.

    9. [9]

      Johnson L V, Walsh M L, Chen L B. Localization of Mitochondria in Living Cells with Rhodamine 123[J]. Proc Natl Acad Sci, 1980,77(2):990-994. doi: 10.1073/pnas.77.2.990

    10. [10]

      Widholm J M. The Use of Fluorescein Diacetate and Phenosafranine for Determining Viability of Cultured Plant Cells[J]. Stain Technol, 1972,47(4):189-194. doi: 10.3109/10520297209116483

    11. [11]

      Feenstra R P G, Tseng S C G. Comparison of Fluorescein and Rose Bengal Staining[J]. Ophthalmology, 1992,99(4):605-617. doi: 10.1016/S0161-6420(92)31947-5

    12. [12]

      Lee S H, Tseng S C G. Amniotic Membrane Transplantation for Persistent Epithelial Defects with Ulceration[J]. Am J Ophthalmol, 1997,123(3):303-312. doi: 10.1016/S0002-9394(14)70125-4

    13. [13]

      Shinoda J, Yano H, Yoshimura S I. Fluorescence-Guided Resection of Glioblastoma Multiforme by Using High-Dose Fluorescein Sodium[J]. J Neurosurg, 2003,99(3):597-603. doi: 10.3171/jns.2003.99.3.0597

    14. [14]

      Jamison J M, Krabill K, Hatwalkar A. Potentiation of the Antiviral Activity of Poly R(A-U) by Xanthene Dyes[J]. Cell Biol Int Rep, 1990,14:1075-1084. doi: 10.1016/0309-1651(90)90015-Q

    15. [15]

      Chibale K, Visser M, van Schalkwyk D. Exploring the Potential of Xanthene Derivatives as Trypanothione Reductase Inhibitors and Chloroquine Potentiating Agents[J]. Tetrahedron, 2003,59:2289-2296. doi: 10.1016/S0040-4020(03)00240-0

    16. [16]

      Sorokin P P, Lankard J R. Flashlamp Excitation of Organic Dye Lasers:A Short Communication[J]. IBM J Res Dev, 1967,11(2):148-148. doi: 10.1147/rd.112.0148

    17. [17]

      Peterson O G, Webb J P, McColgin W C. Organic Dye Laser Threshold[J]. J Appl Phys, 1971,42(5):1917-1928. doi: 10.1063/1.1660468

    18. [18]

      Han J Y, Burgess K. Fluorescent Indicators for Intracellular PH[J]. Chem Rev, 2009,110(5):2709-2728.

    19. [19]

      Urano Y, Kamiya M, Kanda K. Evolution of Fluorescein as a Platform for Finely Tunable Fluorescence Probes[J]. J Am Chem Soc, 2005,127(13):4888-4894. doi: 10.1021/ja043919h

    20. [20]

      Lavis L D, Raines R T. Bright Ideas for Chemical Biology[J]. ACS Chem Biol, 2008,3(3):142-155. doi: 10.1021/cb700248m

    21. [21]

      Lavis L D, Raines R T. Bright Building Blocks for Chemical Biology[J]. ACS Chem Biol, 2014,9(4):855-866. doi: 10.1021/cb500078u

    22. [22]

      Woodroofe C C, Lim M H, Bu W M. Synthesis of Isomerically Pure Carboxylate-and Sulfonate-Substituted Xanthene Fluorophores[J]. Tetrahedron, 2005,61(12):3097-3105. doi: 10.1016/j.tet.2005.01.024

    23. [23]

      Huang K Z, Liu M H, Liu Z G. Ratiometric and Colorimetric Detection of Hydrogen Sulfide with High Selectivity and Sensitivity Using a Novel FRET-Based Fluorescence Probe[J]. Dyes Pigm, 2015,118:88-94. doi: 10.1016/j.dyepig.2015.03.007

    24. [24]

      Sakabe M, Asanuma D, Kamiya M. Rational Design of Highly Sensitive Fluorescence Probes for Protease and Glycosidase Based on Precisely Controlled Spirocyclization[J]. J Am Chem Soc, 2013,135(1):409-414. doi: 10.1021/ja309688m

    25. [25]

      Kolmakov K, Belov V N, Bierwagen J. Red-Emitting Rhodamine Dyes for Fluorescence Microscopy and Nanoscopy[J]. Chem Eur J, 2010,16(1):158-166. doi: 10.1002/chem.v16:1

    26. [26]

      Chang M C Y, Pralle A, Isacoff E Y. A Selevtive, Cell-Permeable Optical Probe for Hydrogen Peroxide in Living Cells[J]. J Am Chem Soc, 2004,126(47):15392-15393. doi: 10.1021/ja0441716

    27. [27]

      Patel R G, Patel M P, Patel R G. 3, 6-Disubtituted Fluorans Containing 4(3H)-quinazolinon-3-yl, Diethyl Amino Groups and Their Application in Reversible Thermochromic Materials[J]. Dyes Pigm, 2005,66(1):7-13. doi: 10.1016/j.dyepig.2004.08.004

    28. [28]

      Hammersh j P, Pramod Kumar E K, Harris P. Facile Large-Scale Synthesis of 5-and 6-Carboxyfluoresceins:Application for the Preparation of New Fluorescent Dyes[J]. Eur J Org Chem, 2015,33:7301-7309.

    29. [29]

      Wang C Y, Wong K M-C. Selevtive Hg2+ Sensing Behaviors of Rhodamine Derivatives with Extended Conjugation Based on Two Successive Ring-Opening Process[J]. Inorg Chem, 2013,52(23):13432-13441. doi: 10.1021/ic401810x

    30. [30]

      Sen R N, Sinha N N. Condensations of Aldehydes with Resorcinol and Some Other Aromatic Hydroxy Compounds[J]. J Am Chem Soc, 1923,45(12):2984-2996. doi: 10.1021/ja01665a026

    31. [31]

      Hilderbrand S A, Weissleder R. One-Pot Synthesis of New Symmetric and Asymmetric Xanthene Dyes[J]. Tetra Lett, 2007,48(25):4383-4385. doi: 10.1016/j.tetlet.2007.04.088

    32. [32]

      Chevalier A, Renard P Y, Romieu A. Straightforward Access to Water-Soluble Unsymmetrical Sulfoxanthene Dyes:Application to the Preparation of Far-Red Fluorescent Dyes with Large Stokes' Shifts[J]. Chem Eur J, 2014,20(27):8330-8337. doi: 10.1002/chem.201402306

    33. [33]

      Jiao G S, Thoresen L H, Burgess K. Fluorescent, Through-Bond Energy Transfer Cassettes for Labelling Mutiple Biological Molecules in One Experiment[J]. J Am Chem Soc, 2003,125(48):14668-14669. doi: 10.1021/ja037193l

    34. [34]

      Sibrian-Vazquez M, Escobedo J O, Lowry M. Field Effects Induce Bathochromic Shifts in Xanthene Dyes[J]. J Am Chem Soc, 2012,134(25):10502-10508. doi: 10.1021/ja302445w

    35. [35]

      Miller E W, Bian S X, Chang C J. A Fluorescent Sensor for Imaging Reversible Redox Cycles in Living Cells[J]. J Am Chem Soc, 2007,129(12):3458-3459. doi: 10.1021/ja0668973

    36. [36]

      Shindo Y, Fujii T, Komatsu H. Newly Developed Mg2+-Selective Fluorescent Probe Enables Visualization of Mg2+ Dynamics in Mitochondria[J]. PLoS One, 2011,6(8)e23684. doi: 10.1371/journal.pone.0023684

    37. [37]

      Cardoso I C S, Amorim A L, Queir s C. Microwave-Assisted Synthesis and Spectroscopic Properties of 4'-Substituted Rosamine Fluorophores and Naphthyl Analogues[J]. Eur J Org Chem, 2012,2012(29):5810-5817. doi: 10.1002/ejoc.201200783

    38. [38]

      Lin W Y, Yuan L, Cao Z M. Through-Bond Energy Transfer Cassettes with Minimal Spectral Overlap Between the Donor Emission and Acceptor Absorption:Coumarin-Rhodamine Dyads with Large Pseudo-Stokes Shifts and Emission Shifts[J]. Angew Chem Int Ed, 2010,49(2):375-379. doi: 10.1002/anie.200904515

    39. [39]

      Minta A, Kao J P, Tsien R Y. Fluorescent Indicators for Cytosolic Calcium Based on Rhodamine and Fluorescein Chromophores[J]. J Biol Chem, 1989,264(14):8171-8178.

    40. [40]

      Hirano T, Kikuchi K, Urano Y. Novel Zinc Fluorescent Probes Excitable with Visible Light for Biological Applications[J]. Angew Chem Int Ed, 2000,112(6):1094-1096. doi: 10.1002/(ISSN)1521-3757

    41. [41]

      Komatsu H, Iwasawa N, Citterio D. Design and Synthesis of Highly Sensitive and Selective Fluorescein-Derived Magnesium Fluorescent Probes and Application to Intracellular 3D Mg2+ Imaging[J]. J Am Chem Soc, 2004,126(50):16353-16360. doi: 10.1021/ja049624l

    42. [42]

      Ahn Y H, Lee J S, Chang Y T. Combinatorial Rosamine Library and Application to in vivo Glutathione Probe[J]. J Am Chem Soc, 2007,129(15):4510-4511. doi: 10.1021/ja068230m

    43. [43]

      Yoon S, Miller E W, He Q W. A Bright and Specific Fluorescent Sensor for Mercury in Water, Cells, and Tissue[J]. Angew Chem Int Ed, 2007,46(35):6658-6661. doi: 10.1002/(ISSN)1521-3773

    44. [44]

      Wu L X, Burgess K. Synthesis and Spectroscopic Properties of Rosamines with Cyclic Amine Substituents[J]. J Org Chem, 2008,73(22):8711-8718. doi: 10.1021/jo800902j

    45. [45]

      Beacham D, Dzubay J, Gee K, et al. Fluorogenic pH Sensitive Dyes and Their Method of Use:US.Patent Application 14/455, 550[P]. 2014-08-08.

    46. [46]

      Carpenter R D, Verkman A S. Synthesis of a Sensitive and Selective Potassium-Sensing Fluoroionophore[J]. Org Lett, 2010,12(6):1160-1163. doi: 10.1021/ol902836c

    47. [47]

      Yang Y J, Escobedo J O, Wong A. A Convenient Preparation of Xanthene Dyes[J]. J Org Chem, 2005,70(17):6907-6912. doi: 10.1021/jo051002a

    48. [48]

      Yang Y J, Lowry M, Schowalter C M. An Organic White Light-Emitting Fluorophore[J]. J Am Chem Soc, 2006,128(43):14081-14092. doi: 10.1021/ja0632207

    49. [49]

      Yang Y J, Lowry M, Xu X Y. Seminaphthofluorones are a Family of Water-Soluble, Low Molecular Weight, NIR-Emitting Fluorophores[J]. Proc Natl Acad Sci, 2008,105(26):8829-8834. doi: 10.1073/pnas.0710341105

    50. [50]

      Sezukuri K, Suzuki M, Hayashi H. A Laterally Π-Expanded Fluorone Dye as an Efficient Near Infrared Fluorophore[J]. Chem Commun, 2016,52(27):4872-4875. doi: 10.1039/C6CC00237D

    51. [51]

      Gaillard S, Yakovlev A, Luccardini C. Synthesis and Characterization of a New Red-Emitting Ca2+ Indicator, Calcium Ruby[J]. Org Lett, 2007,9(14):2629-2632. doi: 10.1021/ol070648h

    52. [52]

      Anzalone A V, Wang T Y, Chen Z X. A Common Diaryl Ether Intermediate for the Gram-Scale Synthesis of Oxazine and Xanthene Fluorophores[J]. Angew Chem Int Ed, 2013,52(2):650-654. doi: 10.1002/anie.201205369

    53. [53]

      Lei Z H, Yang Y J. A Concise Colorimetric and Fluorimetric Probe for Sarin Related Threats Designed via the "Covalent-Assembly" Approach[J]. J Am Chem Soc, 2014,136(18):6594-6597. doi: 10.1021/ja502945q

    54. [54]

      Lei Z H, Li X R, Li Y. Synthesis of Sterically Protected Xanthene Dyes with Bulky Groups at C-3' and C-7'[J]. J Org Chem, 2015,80(22):11538-11543. doi: 10.1021/acs.joc.5b01746

  • 加载中
    1. [1]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    2. [2]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    3. [3]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    4. [4]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    5. [5]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    6. [6]

      Rui Gao Ying Zhou Yifan Hu Siyuan Chen Shouhong Xu Qianfu Luo Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050

    7. [7]

      Zhifang SUZongjie GUANYu FANG . Process of electrocatalytic synthesis of small molecule substances by porous framework materials. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2373-2395. doi: 10.11862/CJIC.20240290

    8. [8]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    9. [9]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    10. [10]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    11. [11]

      Han ZHANGJianfeng SUNJinsheng LIANG . Hydrothermal synthesis and luminescent properties of broadband near-infrared Na3CrF6 phosphor. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 349-356. doi: 10.11862/CJIC.20240098

    12. [12]

      Qi Wang Yicong Gao Feng Lu Quli Fan . Preparation and Performance Characterization of the Second Near-Infrared Phototheranostic Probe: A New Design and Teaching Practice of Polymer Chemistry Comprehensive Experiment. University Chemistry, 2024, 39(11): 342-349. doi: 10.12461/PKU.DXHX202404141

    13. [13]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    14. [14]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    15. [15]

      Tingyu Zhu Hui Zhang Wenwei Zhang . Exploration and Practice of Ideological and Political Education in the Course of Experiments on Chemical Functional Molecules: Synthesis and Catalytic Performance Study of Chiral Mn(III)Cl-Salen Complex. University Chemistry, 2024, 39(4): 75-80. doi: 10.3866/PKU.DXHX202311011

    16. [16]

      Simin Fang Wei Huang Guanghua Yu Cong Wei Mingli Gao Guangshui Li Hongjun Tian Wan Li . Integrating Science and Education in a Comprehensive Chemistry Design Experiment: The Preparation of Copper(I) Oxide Nanoparticles and Its Application in Dye Water Remediation. University Chemistry, 2024, 39(8): 282-289. doi: 10.3866/PKU.DXHX202401023

    17. [17]

      Jinghan ZHANGGuanying CHEN . Progress in the application of rare-earth-doped upconversion nanoprobes in biological detection. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2335-2355. doi: 10.11862/CJIC.20240249

    18. [18]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    19. [19]

      Qingying Gao Tao Luo Jianyuan Su Chaofan Yu Jiazhu Li Bingfei Yan Wenzuo Li Zhen Zhang Yi Liu . Refinement and Expansion of the Classic Cinnamic Acid Synthesis Experiment. University Chemistry, 2024, 39(5): 243-250. doi: 10.3866/PKU.DXHX202311074

    20. [20]

      Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020

Metrics
  • PDF Downloads(20)
  • Abstract views(2355)
  • HTML views(314)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return