Fixable Fluorescent Probes:Reliable Tools for Mitochondrial Sensing and Imaging
- Corresponding author: XIAO Yi, xiaoyi@dlut.edu.cn
Citation:
HUANG Zhenlong, CHEN Lingcheng, XIAO Yi. Fixable Fluorescent Probes:Reliable Tools for Mitochondrial Sensing and Imaging[J]. Chinese Journal of Applied Chemistry,
;2017, 34(12): 1370-1378.
doi:
10.11944/j.issn.1000-0518.2017.12.170303
Ernster L, Schatz G. Mitochondria:A Historical Review[J]. J Cell Biol, 1981,91(2):227-255.
Li X, Fang P, Mai J. Targeting Mitochondrial Reactive Oxygen Species as Novel Therapy for Inflammatory Diseases and Cancers[J]. J Hematol Oncol, 2013,6(1)19. doi: 10.1186/1756-8722-6-19
Hajnóczky G, Csordás G, Yi M. Old Players in A New Role:Mitochondria-associated Membranes, VADC, and Ryanodine Receptors as Contributors to Calcium Signal Propagation From Endoplasmic Reticulum to the Mitochondria[J]. Cell Calcium, 2002,32(5):363-377.
Hajn czky G, Csord s G, Das S. Mitochondrial Calcium Signalling and Cell Death:Approaches for Assessing the Role of Mitochondrial Ca2+ Uptake in Apoptosis[J]. Cell Calcium, 2006,40(5/6):553-560.
Green D R. Apoptotic Pathways:The Roads to Ruin[J]. Cell, 1998,94(6):695-698. doi: 10.1016/S0092-8674(00)81728-6
Abad M F, Di B G, Magalhães P J. Mitochondrial pH Monitored by a New Engineered Green Fluorescent Protein Mutant[J]. J Biol Chem, 2004,279(12):11521-11529. doi: 10.1074/jbc.M306766200
Nomura K, Imai H, Koumura T. Mitochondrial Phospholipid Hydroperoxide Glutathione Peroxidase Suppresses Apoptosis Mediated by a Mitochondrial Death Pathway[J]. J Biol Chem, 1999,274(41)29294. doi: 10.1074/jbc.274.41.29294
Crompton M, Heid I. The Cycling of Calcium, Sodium, and Protons Across the Inner Membrane of Cardiac Mitochondria[J]. Eur J Biochem, 1978,91(2)599. doi: 10.1111/ejb.1978.91.issue-2
Albers A E, Okreglak V S, Chang C J. A FRET-based Approach to Ratiometric Fluorescence Detection of Hydrogen Peroxide[J]. J Am Chem Soc, 2006,128(30):9640-9641. doi: 10.1021/ja063308k
Dickinson B C, Chang C J. A Targetable Fluorescent Probe for Imaging Hydrogen Peroxide in the Mitochondria of Living Cells[J]. J Am Chem Soc, 2008,130(30)9638. doi: 10.1021/ja802355u
Emaus R K, Grunwald R, Lemasters J J. Rhodamine-123 as a Probe of Transmembrane Potential in Isolated Rat-liver Mitochondria-spectral and Metabolic Properties[J]. Biochim Biophys Acta, 1986,850(3):436-448. doi: 10.1016/0005-2728(86)90112-X
Johnson L V, Walsh M L, Chen L B. Localization of Mitochondria in Living Cells with Rhodamine-123[J]. PNAS USA-Biol Sci, 1980,77(2):990-994. doi: 10.1073/pnas.77.2.990
Mahajan N P, Linder K, Berry G. Bcl-2 and Bax Interactions in Mitochondria Probed with Green Fluorescent Protein and Fluorescence Resonance Energy Transfer[J]. Nat Biotechnol, 1998,16(6):547-552. doi: 10.1038/nbt0698-547
Misgeld T, Kerschensteiner M, Bareyre F M. Imaging Axonal Transport of Mitochondria in Vivo[J]. Nat Methods, 2007,4(7):559-561. doi: 10.1038/nmeth1055
Summerhayes I C, Lampidis T J, Bernal S D. Unusual Retention of Rhodamine-123 by Mitochondria in Muscle and Carcinoma-cells[J]. PNAS USA-Biol Sci, 1982,79(17):5292-5296. doi: 10.1073/pnas.79.17.5292
Utsumi K, Oda T. Relation Between ANS Fluorescence and Energy States of Mitochondria[J]. Acta Med Okayama, 1971,23(3):179-1.
Westermann B, Neupert W. Mitochondria-targeted Green Fluorescent Proteins:Convenient Tools for the Study of Organelle Biogenesis in Saccharomyces Cerevisiae[J]. Yeast, 2000,16(15):1421-1427. doi: 10.1002/(ISSN)1097-0061
Yoshioka T, Kubota Y, Horikoshi T. Visualization of Mitochondria in Living Cells with Fluorescence Microscopy[J]. Cell Struct Funct, 1983,8(4):483-483.
Kalashnikova G. A New Method for The Cytofluorimetric Analysis of Mitochondrial Membrane Potential Using the J-aggregate Forming Lipophilic Cation 5, 5', 6, 6'-Tetrachloro-1, 1', 3, 3'-tetraethylbenzimidazolcarbocyanine Iodide(JC-1)[J]. Biochem Biophys Res Commun, 1993,197(1)40. doi: 10.1006/bbrc.1993.2438
Dickinson B C, Chang C J. A Targetable Fluorescent Probe for Imaging Hydrogen Peroxide in the Mitochondria of Living Cells[J]. J Am Chem Soc, 2008,130(30):9638-9. doi: 10.1021/ja802355u
Johnson L V, Walsh M L, Chen L B. Localization of Mitochondria in Living Cells with Rhodamine 123[J]. PNAS USA, 1980,77(2)990. doi: 10.1073/pnas.77.2.990
Bae S K, Heo C H, Choi D J. A Ratiometric Two-photon Fluorescent Probe Reveals Reduction in Mitochondrial H2S Production in Parkinson's Disease Gene Knockout Astrocytes[J]. J Am Chem Soc, 2013,135(26):9915-9923. doi: 10.1021/ja404004v
Gao M, Yu F, Chen H. Near-infrared Fluorescent Probe for Imaging Mitochondrial Hydrogen Polysulfides in Living Cells and in Vivo[J]. Anal Chem, 2015,87(7):3631-3638. doi: 10.1021/ac5044237
Hu Q, Gao M, Feng G. Mitochondria-targeted Cancer Therapy Using a Light-up Probe with Aggregation-induced-emission Characteristics[J]. Angew Chem Int Ed Engl, 2014,53(51):14225-14229. doi: 10.1002/anie.v53.51
Lee M H, Han J H, Lee J H. Mitochondrial Thioredoxin-Responding Off-On Fluorescent Probe[J]. J Am Chem Soc, 2012,134(41):17314-17319. doi: 10.1021/ja308446y
Li P, Zhang W, Li K. Mitochondria-targeted Reaction-based Two-photon Fluorescent Probe for Imaging of Superoxide Anion in Live Cells and in Vivo[J]. Anal Chem, 2013,85(20):9877-9881. doi: 10.1021/ac402409m
Lim C S, Masanta G, Kim H J. Ratiometric Detection of Mitochondrial Thiols with a Two-photon Fluorescent Probe[J]. J Am Chem Soc, 2011,133(29):11132-11135. doi: 10.1021/ja205081s
Masanta G, Lim C S, Kim H J. A Mitochondrial-targeted Two-photon Probe for Zinc Ion[J]. J Am Chem Soc, 2011,133(15):5698-5700. doi: 10.1021/ja200444t
Xu W, Teoh C L, Peng J. A Mitochondria-targeted Ratiometric Fluorescent Probe to Monitor Endogenously Generated Sulfur Dioxide Derivatives in Living Cells[J]. Biomaterials, 2015,56:1-9. doi: 10.1016/j.biomaterials.2015.03.038
Chen G, Fu Q, Yu F. Wide-acidity-range pH Fluorescence Probes for Evaluation of Acidification in Mitochondria and Digestive Tract Mucosa[J]. Anal Chem, 2017.
Han X, Wang Z, Cheng Q. Mitochondria-dependent Benzothi-adiazole-based Molecule Probe for Quantitatively Intracellular pH Imaging[J]. Dyes Pigm, 2017,145:576-583. doi: 10.1016/j.dyepig.2017.06.039
Liu Y, Zhou J, Wang L. A Cyanine Dye to Probe Mitophagy:Simultaneous Detection of Mitochondria and Autolysosomes in Live Cells[J]. J Am Chem Soc, 2016,138(38):12368-12374. doi: 10.1021/jacs.6b04048
Shen S L, Zhao X, Zhang X F. A Mitochondria-targeted Ratiometric Fluorescent Probe for Hypochlorite and Its Applications in Bioimaging[J]. J Mater Chem B, 2017,5(2):289-295. doi: 10.1039/C6TB01992G
Shi W, Pan M, Qiang H. A Novel Mitochondria-targeting Fluorescent Probe for Hydrogen Sulfide in Living Cells[J]. Chem Biol Drug Design, 2017,90(2):167-174. doi: 10.1111/cbdd.2017.90.issue-2
Zhang H, Wang C, Wang K. Ultrasensitive Fluorescent Ratio Imaging Probe for the Detection of Glutathione Ultratrace Change in Mitochondria of Cancer Cells[J]. Biosens Bioelectron, 2016,85:96-102. doi: 10.1016/j.bios.2016.04.097
Zurawik T M, Pomorski A, Belczyk-Ciesielska A. Revisiting Mitochondrial Ph with an Improved Algorithm for Calibration of the Ratiometric 5(6)-Carboxy-snarf-1 Probe Reveals Anticooperative Reaction with H+ Ions and Warrants Further Studies of Organellar pH[J]. Plos One, 2016,11(8)e0161353. doi: 10.1371/journal.pone.0161353
Yu H, Zhang X, Xiao Y. Targetable Fluorescent Probe for Monitoring Exogenous and Endogenous NO in Mitochondria of Living Cells[J]. Anal Chem, 2013,85(15):7076-7084. doi: 10.1021/ac401916z
Salvioli S, Ardizzoni A, Franceschi C. JC-1, but not DIOC6(3) or Rhodamine 123, is a Reliable Fluorescent Probe to Assess δψ Changes in Intact Cells:Implications for Studies on Mitochondrial Functionality During Apoptosis[J]. FEBS Lett, 1997,411(1):77-82. doi: 10.1016/S0014-5793(97)00669-8
Hallap T, Nagy S, Jaakma U. Mitochondrial Activity of Frozen-thawed Spermatozoa Assessed by Mitotracker Deep Red 633[J]. Theriogenology, 2005,63(8):2311-2322. doi: 10.1016/j.theriogenology.2004.10.010
Poot M, Zhang Y Z, Kramer J A. Analysis of Mitochondrial Morphology and Function with Novel Fixable Fluorescent Stains[J]. J Histochem Cytochem, 1996,44(12):1363-1372. doi: 10.1177/44.12.8985128
Haugland R P. Handbook of Fluorescent Probes and Research Products, 9th ed. Molecular Probes, Eugene, Oreg[J]. Mol Probes, 1991.
Gursahani H I, Schaefer S. Acidification Reduces Mitochondrial Calcium Uptake in Rat Cardiac Mitochondria[J]. Am J Physiol Heart Circ Physiol, 2004,287(6):H2659-2665. doi: 10.1152/ajpheart.00344.2004
Porcelli A, Ghelli A, C , Pinton P. pH Difference Across the Outer Mitochondrial Membrane Measured with a Green Fluorescent Protein Mutant[J]. Biochem Biophys Res Commun, 2005,326(4):799-804. doi: 10.1016/j.bbrc.2004.11.105
Lee M H, Park N, Yi C. Mitochondria-immobilized pH-sensitive Off-On Fluorescent Probe[J]. J Am Chem Soc, 2014,136(40):14136-14142. doi: 10.1021/ja506301n
Wang B, Zhang X, Wang C. Bipolar and Fixable Probe Targeting Mitochondria to Trace Local Depolarization Via Two-photon Fluorescence Lifetime Imaging[J]. Analyst, 2015,140(16):5488-5494. doi: 10.1039/C5AN01063B
Song X, Li N, Wang C. Targetable and Fixable Rotor for Quantifying Mitochondrial Viscosity of Living Cells by Fluorescence Lifetime Imaging[J]. J Mater Chem B, 2017,5(2):360-368. doi: 10.1039/C6TB02524B
Xinyi Hong , Tailing Xue , Zhou Xu , Enrong Xie , Mingkai Wu , Qingqing Wang , Lina Wu . Non-Site-Specific Fluorescent Labeling of Proteins as a Chemical Biology Experiment. University Chemistry, 2024, 39(4): 351-360. doi: 10.3866/PKU.DXHX202310010
Yan ZHAO , Xiaokang JIANG , Zhonghui LI , Jiaxu WANG , Hengwei ZHOU , Hai GUO . Preparation and fluorescence properties of Eu3+-doped CaLaGaO4 red-emitting phosphors. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1861-1868. doi: 10.11862/CJIC.20240242
Xinyu Liu , Weiran Hu , Zhengkai Li , Wei Ji , Xiao Ni . Algin Lab: Surging Luminescent Sea. University Chemistry, 2024, 39(5): 396-404. doi: 10.3866/PKU.DXHX202312021
Siyi ZHONG , Xiaowen LIN , Jiaxin LIU , Ruyi WANG , Tao LIANG , Zhengfeng DENG , Ao ZHONG , Cuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093
Chun-Lin Sun , Yaole Jiang , Yu Chen , Rongjing Guo , Yongwen Shen , Xinping Hui , Baoxin Zhang , Xiaobo Pan . Construction, Performance Testing, and Practical Applications of a Home-Made Open Fluorescence Spectrometer. University Chemistry, 2024, 39(5): 287-295. doi: 10.3866/PKU.DXHX202311096
Jianjun Liu , Xue Yang , Chi Zhang , Xueyu Zhao , Zhiwei Zhang , Yongmei Chen , Qinghong Xu , Shao Jin . Preparation and Fluorescence Characterization of CdTe Semiconductor Quantum Dots. University Chemistry, 2024, 39(7): 307-315. doi: 10.3866/PKU.DXHX202311031
Zishuo Yi , Peng Liu , Yan Xu . Fluorescent “Chameleon”: A Popular Science Experiment Based on Dynamic Luminescence. University Chemistry, 2024, 39(9): 304-310. doi: 10.12461/PKU.DXHX202311079
Zhongxin YU , Wei SONG , Yang LIU , Yuxue DING , Fanhao MENG , Shuju WANG , Lixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304
Zijuan LI , Xuan LÜ , Jiaojiao CHEN , Haiyang ZHAO , Shuo SUN , Zhiwu ZHANG , Jianlong ZHANG , Yanling MA , Jie LI , Zixian FENG , Jiahui LIU . Synthesis of visual fluorescence emission CdSe nanocrystals based on ligand regulation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 308-320. doi: 10.11862/CJIC.20240138
Peiran ZHAO , Yuqian LIU , Cheng HE , Chunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355
Jiakun BAI , Ting XU , Lu ZHANG , Jiang PENG , Yuqiang LI , Junhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002
Lin Song , Dourong Wang , Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107
Xiao SANG , Qi LIU , Jianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158
Han ZHANG , Jianfeng SUN , Jinsheng LIANG . Hydrothermal synthesis and luminescent properties of broadband near-infrared Na3CrF6 phosphor. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 349-356. doi: 10.11862/CJIC.20240098
Xin MA , Ya SUN , Na SUN , Qian KANG , Jiajia ZHANG , Ruitao ZHU , Xiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357
Zhaoyang WANG , Chun YANG , Yaoyao Song , Na HAN , Xiaomeng LIU , Qinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114
Jinlong YAN , Weina WU , Yuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154
Qin Hou , Jiayi Hou , Aiju Shi , Xingliang Xu , Yuanhong Zhang , Yijing Li , Juying Hou , Yanfang Wang . Preparation of Cuprous Iodide Coordination Polymer and Fluorescent Detection of Nitrite: A Comprehensive Chemical Design Experiment. University Chemistry, 2024, 39(8): 221-229. doi: 10.3866/PKU.DXHX202312056
Jun LUO , Baoshu LIU , Yunchang ZHANG , Bingkai WANG , Beibei GUO , Lan SHE , Tianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240
Xuewei BA , Cheng CHENG , Huaikang ZHANG , Deqing ZHANG , Shuhua LI . Preparation and luminescent performance of Sr1-xZrSi2O7∶xDy3+ phosphor with high thermal stability. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 357-364. doi: 10.11862/CJIC.20240096
(a)Confocal microscopy images of 1(5.0 μmol/L) and MitoTracker Red(MTR)(0.1 μmol/L) in fixed cells exposed to external media fixed at pH 5, 6, 7, and 8, respectively. (b)Intracellular pH calibration curve constructed by plotting Igreen/Ired vs pH. The dots are based on the average with the indicated standard error. The table provides the average pH values of the mitochondria in intact and nutrient-deprived cells. (c)Images of 1 and MTR in intact cells
A.Fluorescence imaging of Vis-A in 7721 cells; B.Fluorescence life time imaging of Vis-A in 7721 cells; C.Fluorescence lifetime distribution histogram for B; D.The fluorescence decay curve of point D in image B; E.Fluorescence imaging of Vis-B in 7721 cells; F.Fuorescence lifetime imaging of Vis-B in 7721 cells; G.Fluorescence lifetime distribution histogram for E; H.The fluorescence decay curve of point H in image F