Citation: HUANG Zhenlong, CHEN Lingcheng, XIAO Yi. Fixable Fluorescent Probes:Reliable Tools for Mitochondrial Sensing and Imaging[J]. Chinese Journal of Applied Chemistry, ;2017, 34(12): 1370-1378. doi: 10.11944/j.issn.1000-0518.2017.12.170303 shu

Fixable Fluorescent Probes:Reliable Tools for Mitochondrial Sensing and Imaging

  • Corresponding author: XIAO Yi, xiaoyi@dlut.edu.cn
  • Received Date: 29 August 2017
    Revised Date: 25 September 2017
    Accepted Date: 30 September 2017

    Fund Project: the National Natural Science Foundation of China 21576040the National Natural Science Foundation of China 21421005the National Natural Science Foundation of China 21174022the National Natural Science Foundation of China 21376038the National Basic Research Program of China 2013CB733702Supported by the National Natural Science Foundation of China(No.21174022, No.21376038, No.21421005, No.21576040), the National Basic Research Program of China(No.2013CB733702)

Figures(9)

  • Mitochondria, a cell organelle with a double membrane structure, plays significant roles in cell metabolism, including energy circulation and ions balance. Some small positively charged molecule fluorescent dyes/probes can label mitochondria due to the traction of the mitochondrial inner membrane negative potential, providing an important visual imaging tool for investigation of mitochondrial morphology and function. However, most mitochondrial dyes/probes are unsatisfactory as targeting marker of mitochondria, because the mitochondrial potential is constantly changing, when the potential reduced, the affinity of the dye accordingly decreases. Especially, the mitochondrial membrane potential will be significantly reduced when cell metabolism is blocked in pathological conditions(such as apoptosis), thus cationic dyes will spread away from mitochondria and result in non-specific fluorescence. Recently, the Kim team and our team proposed a new concept of fixed mitochondrial probe, with the active group of fluorescent molecular probe can be fixed in the mitochondria through the covalent bond, and developed a series of fluorescent probes that stably targeted mitochondria for the quantitative detection of microenvironment pH, viscosity, and membrane potential. We believe that the development of immobilized mitochondrial fluorescent molecular probes is an inevitable trend in tracking and detecting mitochondria with highly dynamic characteristics. Therefore, this paper reviews and prospects the fixable fluorescent dyes of mitochondria.
  • 加载中
    1. [1]

      Ernster L, Schatz G. Mitochondria:A Historical Review[J]. J Cell Biol, 1981,91(2):227-255.

    2. [2]

      Li X, Fang P, Mai J. Targeting Mitochondrial Reactive Oxygen Species as Novel Therapy for Inflammatory Diseases and Cancers[J]. J Hematol Oncol, 2013,6(1)19. doi: 10.1186/1756-8722-6-19

    3. [3]

      Hajnóczky G, Csordás G, Yi M. Old Players in A New Role:Mitochondria-associated Membranes, VADC, and Ryanodine Receptors as Contributors to Calcium Signal Propagation From Endoplasmic Reticulum to the Mitochondria[J]. Cell Calcium, 2002,32(5):363-377.

    4. [4]

      Hajn czky G, Csord s G, Das S. Mitochondrial Calcium Signalling and Cell Death:Approaches for Assessing the Role of Mitochondrial Ca2+ Uptake in Apoptosis[J]. Cell Calcium, 2006,40(5/6):553-560.

    5. [5]

      Green D R. Apoptotic Pathways:The Roads to Ruin[J]. Cell, 1998,94(6):695-698. doi: 10.1016/S0092-8674(00)81728-6

    6. [6]

      Abad M F, Di B G, Magalhães P J. Mitochondrial pH Monitored by a New Engineered Green Fluorescent Protein Mutant[J]. J Biol Chem, 2004,279(12):11521-11529. doi: 10.1074/jbc.M306766200

    7. [7]

      Nomura K, Imai H, Koumura T. Mitochondrial Phospholipid Hydroperoxide Glutathione Peroxidase Suppresses Apoptosis Mediated by a Mitochondrial Death Pathway[J]. J Biol Chem, 1999,274(41)29294. doi: 10.1074/jbc.274.41.29294

    8. [8]

      Crompton M, Heid I. The Cycling of Calcium, Sodium, and Protons Across the Inner Membrane of Cardiac Mitochondria[J]. Eur J Biochem, 1978,91(2)599. doi: 10.1111/ejb.1978.91.issue-2

    9. [9]

      Albers A E, Okreglak V S, Chang C J. A FRET-based Approach to Ratiometric Fluorescence Detection of Hydrogen Peroxide[J]. J Am Chem Soc, 2006,128(30):9640-9641. doi: 10.1021/ja063308k

    10. [10]

      Dickinson B C, Chang C J. A Targetable Fluorescent Probe for Imaging Hydrogen Peroxide in the Mitochondria of Living Cells[J]. J Am Chem Soc, 2008,130(30)9638. doi: 10.1021/ja802355u

    11. [11]

      Emaus R K, Grunwald R, Lemasters J J. Rhodamine-123 as a Probe of Transmembrane Potential in Isolated Rat-liver Mitochondria-spectral and Metabolic Properties[J]. Biochim Biophys Acta, 1986,850(3):436-448. doi: 10.1016/0005-2728(86)90112-X

    12. [12]

      Johnson L V, Walsh M L, Chen L B. Localization of Mitochondria in Living Cells with Rhodamine-123[J]. PNAS USA-Biol Sci, 1980,77(2):990-994. doi: 10.1073/pnas.77.2.990

    13. [13]

      Mahajan N P, Linder K, Berry G. Bcl-2 and Bax Interactions in Mitochondria Probed with Green Fluorescent Protein and Fluorescence Resonance Energy Transfer[J]. Nat Biotechnol, 1998,16(6):547-552. doi: 10.1038/nbt0698-547

    14. [14]

      Misgeld T, Kerschensteiner M, Bareyre F M. Imaging Axonal Transport of Mitochondria in Vivo[J]. Nat Methods, 2007,4(7):559-561. doi: 10.1038/nmeth1055

    15. [15]

      Summerhayes I C, Lampidis T J, Bernal S D. Unusual Retention of Rhodamine-123 by Mitochondria in Muscle and Carcinoma-cells[J]. PNAS USA-Biol Sci, 1982,79(17):5292-5296. doi: 10.1073/pnas.79.17.5292

    16. [16]

      Utsumi K, Oda T. Relation Between ANS Fluorescence and Energy States of Mitochondria[J]. Acta Med Okayama, 1971,23(3):179-1.

    17. [17]

      Westermann B, Neupert W. Mitochondria-targeted Green Fluorescent Proteins:Convenient Tools for the Study of Organelle Biogenesis in Saccharomyces Cerevisiae[J]. Yeast, 2000,16(15):1421-1427. doi: 10.1002/(ISSN)1097-0061

    18. [18]

      Yoshioka T, Kubota Y, Horikoshi T. Visualization of Mitochondria in Living Cells with Fluorescence Microscopy[J]. Cell Struct Funct, 1983,8(4):483-483.

    19. [19]

      Kalashnikova G. A New Method for The Cytofluorimetric Analysis of Mitochondrial Membrane Potential Using the J-aggregate Forming Lipophilic Cation 5, 5', 6, 6'-Tetrachloro-1, 1', 3, 3'-tetraethylbenzimidazolcarbocyanine Iodide(JC-1)[J]. Biochem Biophys Res Commun, 1993,197(1)40. doi: 10.1006/bbrc.1993.2438

    20. [20]

      Dickinson B C, Chang C J. A Targetable Fluorescent Probe for Imaging Hydrogen Peroxide in the Mitochondria of Living Cells[J]. J Am Chem Soc, 2008,130(30):9638-9. doi: 10.1021/ja802355u

    21. [21]

      Johnson L V, Walsh M L, Chen L B. Localization of Mitochondria in Living Cells with Rhodamine 123[J]. PNAS USA, 1980,77(2)990. doi: 10.1073/pnas.77.2.990

    22. [22]

      Bae S K, Heo C H, Choi D J. A Ratiometric Two-photon Fluorescent Probe Reveals Reduction in Mitochondrial H2S Production in Parkinson's Disease Gene Knockout Astrocytes[J]. J Am Chem Soc, 2013,135(26):9915-9923. doi: 10.1021/ja404004v

    23. [23]

      Gao M, Yu F, Chen H. Near-infrared Fluorescent Probe for Imaging Mitochondrial Hydrogen Polysulfides in Living Cells and in Vivo[J]. Anal Chem, 2015,87(7):3631-3638. doi: 10.1021/ac5044237

    24. [24]

      Hu Q, Gao M, Feng G. Mitochondria-targeted Cancer Therapy Using a Light-up Probe with Aggregation-induced-emission Characteristics[J]. Angew Chem Int Ed Engl, 2014,53(51):14225-14229. doi: 10.1002/anie.v53.51

    25. [25]

      Lee M H, Han J H, Lee J H. Mitochondrial Thioredoxin-Responding Off-On Fluorescent Probe[J]. J Am Chem Soc, 2012,134(41):17314-17319. doi: 10.1021/ja308446y

    26. [26]

      Li P, Zhang W, Li K. Mitochondria-targeted Reaction-based Two-photon Fluorescent Probe for Imaging of Superoxide Anion in Live Cells and in Vivo[J]. Anal Chem, 2013,85(20):9877-9881. doi: 10.1021/ac402409m

    27. [27]

      Lim C S, Masanta G, Kim H J. Ratiometric Detection of Mitochondrial Thiols with a Two-photon Fluorescent Probe[J]. J Am Chem Soc, 2011,133(29):11132-11135. doi: 10.1021/ja205081s

    28. [28]

      Masanta G, Lim C S, Kim H J. A Mitochondrial-targeted Two-photon Probe for Zinc Ion[J]. J Am Chem Soc, 2011,133(15):5698-5700. doi: 10.1021/ja200444t

    29. [29]

      Xu W, Teoh C L, Peng J. A Mitochondria-targeted Ratiometric Fluorescent Probe to Monitor Endogenously Generated Sulfur Dioxide Derivatives in Living Cells[J]. Biomaterials, 2015,56:1-9. doi: 10.1016/j.biomaterials.2015.03.038

    30. [30]

      Chen G, Fu Q, Yu F. Wide-acidity-range pH Fluorescence Probes for Evaluation of Acidification in Mitochondria and Digestive Tract Mucosa[J]. Anal Chem, 2017.

    31. [31]

      Han X, Wang Z, Cheng Q. Mitochondria-dependent Benzothi-adiazole-based Molecule Probe for Quantitatively Intracellular pH Imaging[J]. Dyes Pigm, 2017,145:576-583. doi: 10.1016/j.dyepig.2017.06.039

    32. [32]

      Liu Y, Zhou J, Wang L. A Cyanine Dye to Probe Mitophagy:Simultaneous Detection of Mitochondria and Autolysosomes in Live Cells[J]. J Am Chem Soc, 2016,138(38):12368-12374. doi: 10.1021/jacs.6b04048

    33. [33]

      Shen S L, Zhao X, Zhang X F. A Mitochondria-targeted Ratiometric Fluorescent Probe for Hypochlorite and Its Applications in Bioimaging[J]. J Mater Chem B, 2017,5(2):289-295. doi: 10.1039/C6TB01992G

    34. [34]

      Shi W, Pan M, Qiang H. A Novel Mitochondria-targeting Fluorescent Probe for Hydrogen Sulfide in Living Cells[J]. Chem Biol Drug Design, 2017,90(2):167-174. doi: 10.1111/cbdd.2017.90.issue-2

    35. [35]

      Zhang H, Wang C, Wang K. Ultrasensitive Fluorescent Ratio Imaging Probe for the Detection of Glutathione Ultratrace Change in Mitochondria of Cancer Cells[J]. Biosens Bioelectron, 2016,85:96-102. doi: 10.1016/j.bios.2016.04.097

    36. [36]

      Zurawik T M, Pomorski A, Belczyk-Ciesielska A. Revisiting Mitochondrial Ph with an Improved Algorithm for Calibration of the Ratiometric 5(6)-Carboxy-snarf-1 Probe Reveals Anticooperative Reaction with H+ Ions and Warrants Further Studies of Organellar pH[J]. Plos One, 2016,11(8)e0161353. doi: 10.1371/journal.pone.0161353

    37. [37]

      Yu H, Zhang X, Xiao Y. Targetable Fluorescent Probe for Monitoring Exogenous and Endogenous NO in Mitochondria of Living Cells[J]. Anal Chem, 2013,85(15):7076-7084. doi: 10.1021/ac401916z

    38. [38]

      Salvioli S, Ardizzoni A, Franceschi C. JC-1, but not DIOC6(3) or Rhodamine 123, is a Reliable Fluorescent Probe to Assess δψ Changes in Intact Cells:Implications for Studies on Mitochondrial Functionality During Apoptosis[J]. FEBS Lett, 1997,411(1):77-82. doi: 10.1016/S0014-5793(97)00669-8

    39. [39]

      Hallap T, Nagy S, Jaakma U. Mitochondrial Activity of Frozen-thawed Spermatozoa Assessed by Mitotracker Deep Red 633[J]. Theriogenology, 2005,63(8):2311-2322. doi: 10.1016/j.theriogenology.2004.10.010

    40. [40]

      Poot M, Zhang Y Z, Kramer J A. Analysis of Mitochondrial Morphology and Function with Novel Fixable Fluorescent Stains[J]. J Histochem Cytochem, 1996,44(12):1363-1372. doi: 10.1177/44.12.8985128

    41. [41]

      Haugland R P. Handbook of Fluorescent Probes and Research Products, 9th ed. Molecular Probes, Eugene, Oreg[J]. Mol Probes, 1991.

    42. [42]

      Gursahani H I, Schaefer S. Acidification Reduces Mitochondrial Calcium Uptake in Rat Cardiac Mitochondria[J]. Am J Physiol Heart Circ Physiol, 2004,287(6):H2659-2665. doi: 10.1152/ajpheart.00344.2004

    43. [43]

      Porcelli A, Ghelli A, C , Pinton P. pH Difference Across the Outer Mitochondrial Membrane Measured with a Green Fluorescent Protein Mutant[J]. Biochem Biophys Res Commun, 2005,326(4):799-804. doi: 10.1016/j.bbrc.2004.11.105

    44. [44]

      Lee M H, Park N, Yi C. Mitochondria-immobilized pH-sensitive Off-On Fluorescent Probe[J]. J Am Chem Soc, 2014,136(40):14136-14142. doi: 10.1021/ja506301n

    45. [45]

      Wang B, Zhang X, Wang C. Bipolar and Fixable Probe Targeting Mitochondria to Trace Local Depolarization Via Two-photon Fluorescence Lifetime Imaging[J]. Analyst, 2015,140(16):5488-5494. doi: 10.1039/C5AN01063B

    46. [46]

      Song X, Li N, Wang C. Targetable and Fixable Rotor for Quantifying Mitochondrial Viscosity of Living Cells by Fluorescence Lifetime Imaging[J]. J Mater Chem B, 2017,5(2):360-368. doi: 10.1039/C6TB02524B

  • 加载中
    1. [1]

      Xinyi Hong Tailing Xue Zhou Xu Enrong Xie Mingkai Wu Qingqing Wang Lina Wu . Non-Site-Specific Fluorescent Labeling of Proteins as a Chemical Biology Experiment. University Chemistry, 2024, 39(4): 351-360. doi: 10.3866/PKU.DXHX202310010

    2. [2]

      Yan ZHAOXiaokang JIANGZhonghui LIJiaxu WANGHengwei ZHOUHai GUO . Preparation and fluorescence properties of Eu3+-doped CaLaGaO4 red-emitting phosphors. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1861-1868. doi: 10.11862/CJIC.20240242

    3. [3]

      Xinyu Liu Weiran Hu Zhengkai Li Wei Ji Xiao Ni . Algin Lab: Surging Luminescent Sea. University Chemistry, 2024, 39(5): 396-404. doi: 10.3866/PKU.DXHX202312021

    4. [4]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    5. [5]

      Chun-Lin Sun Yaole Jiang Yu Chen Rongjing Guo Yongwen Shen Xinping Hui Baoxin Zhang Xiaobo Pan . Construction, Performance Testing, and Practical Applications of a Home-Made Open Fluorescence Spectrometer. University Chemistry, 2024, 39(5): 287-295. doi: 10.3866/PKU.DXHX202311096

    6. [6]

      Jianjun Liu Xue Yang Chi Zhang Xueyu Zhao Zhiwei Zhang Yongmei Chen Qinghong Xu Shao Jin . Preparation and Fluorescence Characterization of CdTe Semiconductor Quantum Dots. University Chemistry, 2024, 39(7): 307-315. doi: 10.3866/PKU.DXHX202311031

    7. [7]

      Zishuo Yi Peng Liu Yan Xu . Fluorescent “Chameleon”: A Popular Science Experiment Based on Dynamic Luminescence. University Chemistry, 2024, 39(9): 304-310. doi: 10.12461/PKU.DXHX202311079

    8. [8]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    9. [9]

      Zijuan LIXuan LÜJiaojiao CHENHaiyang ZHAOShuo SUNZhiwu ZHANGJianlong ZHANGYanling MAJie LIZixian FENGJiahui LIU . Synthesis of visual fluorescence emission CdSe nanocrystals based on ligand regulation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 308-320. doi: 10.11862/CJIC.20240138

    10. [10]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    11. [11]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    12. [12]

      Lin Song Dourong Wang Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107

    13. [13]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    14. [14]

      Han ZHANGJianfeng SUNJinsheng LIANG . Hydrothermal synthesis and luminescent properties of broadband near-infrared Na3CrF6 phosphor. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 349-356. doi: 10.11862/CJIC.20240098

    15. [15]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    16. [16]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    17. [17]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    18. [18]

      Qin Hou Jiayi Hou Aiju Shi Xingliang Xu Yuanhong Zhang Yijing Li Juying Hou Yanfang Wang . Preparation of Cuprous Iodide Coordination Polymer and Fluorescent Detection of Nitrite: A Comprehensive Chemical Design Experiment. University Chemistry, 2024, 39(8): 221-229. doi: 10.3866/PKU.DXHX202312056

    19. [19]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    20. [20]

      Xuewei BACheng CHENGHuaikang ZHANGDeqing ZHANGShuhua LI . Preparation and luminescent performance of Sr1-xZrSi2O7xDy3+ phosphor with high thermal stability. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 357-364. doi: 10.11862/CJIC.20240096

Metrics
  • PDF Downloads(35)
  • Abstract views(2719)
  • HTML views(853)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return