Research Progress of Fluorescent Zinc Probes
- Corresponding author: XIE Yongshu, yshxie@ecust.edu.cn
Citation:
BU Lulu, WANG Qing, XIE Yongshu. Research Progress of Fluorescent Zinc Probes[J]. Chinese Journal of Applied Chemistry,
;2017, 34(12): 1355-1369.
doi:
10.11944/j.issn.1000-0518.2017.12.170302
Frederickson C J, Koh J Y, Bush A I. The Neurobiology of Zinc in Health and Disease[J]. Nat Rev Neurosci, 2005,6(6):449-462. doi: 10.1038/nrn1671
Que E L, Domaille D W, Chang C J. Metals in Neurobiology:Probing Their Chemistry and Biology with Molecular Imaging[J]. Chem Rev, 2008,108(5):1517-1549. doi: 10.1021/cr078203u
Assaf S Y, Chung S H. Release of Endogenous Zn2+ from Brain Tissue During Activity[J]. Nature, 1984,308(5961):734-736. doi: 10.1038/308734a0
Choi D W, Koh J Y. Zinc and Brain Injury[J]. Annu Rev Neurosci, 1998,21(21):347-375.
Wang L, Liu J H, Song Z M. Interaction of Multi-Walled Carbon Nanotubes and Zinc Ions Enhances Cytotoxicity of Zinc Ions[J]. Sci China Chem, 2016,59(7):910-917. doi: 10.1007/s11426-016-5591-2
Maret W, Jacob C, Vallee B L. Inhibitory Sites in Enzymes:Zinc Removal and Reactivation by Thionein[J]. Proc Natl Acad Sci USA, 1999,96(5):1936-1940. doi: 10.1073/pnas.96.5.1936
Falchuk K H. The Molecular Basis for the Role of Zinc in Developmental Biology[J]. Mol Cell Biochem, 1998,188(1):41-48.
Cao M J, Chen H Y, Chen D. Naphthalimide-Based Fluorescent Probe for Selectively and Specifically Detecting Glutathione in the Lysosomes of Living Cells[J]. Chem Commun, 2016,52(4):721-724. doi: 10.1039/C5CC08328A
Maeda H, Bando Y, Shimomura K. Chemical-Stimuli-Controllable Circularly Polarized Luminescence from Anion-Responsive π-Conjugated Molecules[J]. J Am Chem Soc, 2011,133(24):9266-9269. doi: 10.1021/ja203206g
Akamatsu M, Komatsu H, Mori T. Intracellular Imaging of Cesium Distribution in Arabidopsis Using Cesium Green[J]. ACS Appl Mater Interfaces, 2014,6(11):8208-8211. doi: 10.1021/am5009453
Mukherjee S, Salini P S, Srinivasan A. AIEE Phenomenon:Tetraaryl vs. Triaryl Pyrazoles[J]. Chem Commun, 2015,51(96):17148-17151. doi: 10.1039/C5CC05973A
Li J F, Yin C X, Huo F J. Development of Fluorescent Zinc Chemosensors Based on Various Fluorophores and Their Applications in Zinc Recognition[J]. Dyes Pigm, 2016,131:100-133. doi: 10.1016/j.dyepig.2016.03.043
Maeda H, Kusunose Y. Dipyrrolyldiketone Difluoroboron Complexes:Novel Anion Sensors with CHX Interactions[J]. Chem Eur J, 2005,11(19):5661-5666. doi: 10.1002/(ISSN)1521-3765
Akamatsu M, Mori T, Okamoto K. Detection of Ethanol in Alcoholic Beverages or Vapor Phase Using Fluorescent Molecules Embedded in a Nano Fibrous Polymer[J]. ACS Appl Mater Interfaces, 2015,7(11):6189-6194. doi: 10.1021/acsami.5b00289
Yin C X, Huo F J, Zhang J J. Thiol-Addition Reactions and Their Applications in Thiol Recognition[J]. Chem Soc Rev, 2013,42(14):6032-6059. doi: 10.1039/c3cs60055f
Zhang Y F, Chen H Y, Chen D. A Colorimetric and Ratiometric Fluorescent Probe for Mercury(Ⅱ) in Lysosome[J]. Sens Actuators, B, 2016,224:907-914. doi: 10.1016/j.snb.2015.11.018
Sreedevi K C G, Thomas A P, Aparna K H. Photoenolization via Excited State Double Proton Transfer Induces "Turn On" Fluorescence in Diformyl Diaryl Dipyrromethane[J]. Chem Commun, 2014,50(63):8667-8669. doi: 10.1039/C4CC03668A
Liu Y, Yu D H, Ding S S. Rapid and Ratiometric Fluorescent Detection of Cysteine with High Selectivity and Sensitivity by a Simple and Readily Available Probe[J]. ACS Appl Mater Interfaces, 2014,6(20):17543-17550. doi: 10.1021/am505501d
Kumar K, Verma T, Mukherjee R. Raman and Infra-Red Microspectroscopy:Towards Quantitative Evaluation for Clinical Research by Ratiometric Analysis[J]. Chem Soc Rev, 2016,45:1879-1900. doi: 10.1039/C5CS00540J
Yu H O, Xiao Y, Qian X H. Convenient and Efficient FRET Platform Featuring a Rigid Biophenyl Spacer Between Rhodamine and BODIPY:Transformation of "Turn-On" Sensors into Ratiometric Ones with Dual Emission[J]. Chem Eur J, 2011,17(11):3179-3191. doi: 10.1002/chem.v17.11
Yu M X, Shi M, Chen Z G. Highly Sensitive and Fast Responsive Fluorescence Turn-On Chemodosimeter for Cu2+ and Its Application in Live Cell Imaging[J]. Chem Eur J, 2008,14(23):6892-6900. doi: 10.1002/chem.v14:23
Wu Y K, Peng X J, Guo B C. Boron Dipyrromethene Fluorophore Based Fluorescence Sensor for the Selective Imaging of Zn(Ⅱ) in Living Cells[J]. Org Biomol Chem, 2005,3(8):1387-1392. doi: 10.1039/b501795e
Nan Q, Rong P, Jiang Y B. New Highly Selective Turn-On Fluorescence Receptor for the Detection of Copper(Ⅱ)[J]. Spectrochim Acta A, 2017,174(5):307-315.
Xu Z C, Yoon J, Spring D R. Fluorescent Chemosensors for Zn2+[J]. Chem Soc Rev, 2010,39(6):1996-2006. doi: 10.1039/b916287a
Chen Y C, Bai Y, Han Z. Photoluminescence Imaging of Zn2+ in Living Systems[J]. Chem Soc Rev, 2015,44(14):4517-4546. doi: 10.1039/C5CS00005J
Ding Y B, Tamg Y Y, Zhu W H. Fluorescent and Colorimetric Ion Probes Based on Conjugated Oligopyrroles[J]. Chem Soc Rev, 2015,44(5):1101-1112. doi: 10.1039/C4CS00436A
Li J, Yim D, Jang W D. Recent Progress in the Design and Applications of Fluorescence Probes Containing Crown Ethers[J]. Chem Soc Rev, 2016,46(9):2437-2650.
Ding Y B, Zhu W H, Xie Y S. Development of Ion Chemosensors Based on Porphyrin Analogues[J]. Chem Rev, 2017,177(4):2203-2256.
Jiang P J, Guo Z J. Fluorescent Detection of Zinc in Biological Systems:Recent Development on the Design of Chemosensors and Biosensors[J]. Coord Chem Rev, 2004,248(1/2):205-229.
Koike T, Watanabe T, Aoki S. A Novel Biomimetic Zinc(Ⅱ)-Fluorophore, Dansylamidoethyl-Pendant Macrocyclic Tetraamine 1, 4, 7, 10-Tetraazacyclododecane (Cyclen)[J]. J Am Chem Soc, 1996,118(50):12696-12703. doi: 10.1021/ja962527a
WANG Zuohui, WANG Shumin. Research Advance on the Fluorescent Probe of Zn2+[J]. Guangzhou Chem Ind, 2013,41(22).
de Silva P, de Silva S A. Fluorescent Signalling Crown Ethers; 'Switching On' of Fluorescence by Alkali Metal Ion Recognition and Binding in Situ[J]. J Chem Soc, Chem Commun, 1986,1709(23):1709-1710.
Tomat E, Nolan E M, Jaworski J. Organelle-Specific Zinc Detection Using Zinpyr-Labeled Fusion Proteins in Live Cells[J]. J Am Chem Soc, 2008,130(47):15776-15777. doi: 10.1021/ja806634e
Zhang X A, Hayes D, Smith S J. New Strategy for Quantifying Biological Zinc by a Modified Zinpyr Fluorescence Sensor[J]. J Am Chem Soc, 2008,130(47):15788-15789. doi: 10.1021/ja807156b
Wong B A, Friedle S, Lippard S J. Solution and Fluorescence Properties of Symmetric Dipicolylamine-Containing Dichlorofluorescein-Based Zn2+ Sensors[J]. J Am Chem Soc, 2009,131(20):7142-7152. doi: 10.1021/ja900980u
Tomat E, Lippard S J. Ratiometric and Intensity-Based Zinc Sensors Built on Rhodol and Rhodamine Platforms[J]. Inorg Chem, 2010,49(20):9113-9115. doi: 10.1021/ic101513a
You Y M, Lee S, Kim T. Phosphorescent Sensor for Biological Mobile Zinc[J]. J Am Chem Soc, 2011,133(45):18328-18342. doi: 10.1021/ja207163r
Lin W, Buccella D, Lippard S J. Visualization of Peroxynitrite-Induced Changes of Labile Zn2+ in the Endoplasmic Reticulum with Benzoresorufin-Based Fluorescent Probes[J]. J Am Chem Soc, 2013,135(36):13512-13520. doi: 10.1021/ja4059487
Rivera-Fuentes P, Lippard S J. SpiroZin 1:A Reversible and pH-Insensitive, Reaction-Based, Red-Fluorescent Probe for Imaging Biological Mobile Zinc[J]. Chem Med Chem, 2014,9(6):1238-1243. doi: 10.1002/cmdc.201400014
Radford R J, Chyan W, Lippard S J. Peptide Targeting of Fluorescein-Based Sensors to Discrete Intracellular Locales[J]. Chem Sci, 2014,5(11):4512-4516. doi: 10.1039/C4SC01280A
Zastrow M L, Radford R J, Chyan W. Reaction-Based Probes for Imaging Mobile Zinc in Live Cells and Tissues[J]. ACS Sens, 2016,1(1):32-39. doi: 10.1021/acssensors.5b00022
Walkup G K, Burdette S C, Lippard S J. A New Cell-Permeable Fluorescent Probe for Zn2+[J]. J Am Chem Soc, 2000,122(23):5644-5645. doi: 10.1021/ja000868p
Burdette S C, Frederickson C J, Bu W M. ZP4, an Improved Nuronal Zn2+ Sensor of The Zinpyr Family[J]. J Am Chem Soc, 2003,125(7):1778-1787. doi: 10.1021/ja0287377
Nolan E M, Ryu J W, Jaworski J. Zinspy Sensors with Enhanced Dynamic Range for Imaging Neuronal Cell Zinc Uptake and Mobilization[J]. J Am Chem Soc, 2006,128(48):15517-15528. doi: 10.1021/ja065759a
Buccella D, Horowitz J A, Lippard S J. Understanding Zinc Quantification with Existing and Advanced Ditopic Fluorescent Zinpyr Sensors[J]. J Am Chem Soc, 2011,133(11):4101-4114. doi: 10.1021/ja110907m
Xu Z C, Baek K H, Kim H N. Zn2+-Triggered Amide Tautomerization Produces a Highly Zn2+-Selective, Cell-Permeable, and Ratiometric Fluorescent Sensor[J]. J Am Chem Soc, 2010,132(2):601-610. doi: 10.1021/ja907334j
Hanaoka K, Kikuchi K, Kojima H. Development of a Zinc Ion-Selective Luminescent Lanthanide Chemosensor for Biological Applications[J]. J Am Chem Soc, 2004,126(39):12470-12476. doi: 10.1021/ja0469333
Shyamal M, Mazumdar P, Maity S. Highly Selective Turn-On Fluorogenic Chemosensor for Robust Quantification of Zn(Ⅱ) Based on Aggregation Induced Emission Enhancement Feature[J]. ACS Sens, 2016,1(6):739-747. doi: 10.1021/acssensors.6b00289
Xue L, Liu C, Jiang H. A Ratiometric Fluorescent Sensor with a Large Stokes Shift for Imaging Zinc Ions in Living Cells[J]. Chem Commun, 2009,9(9):1061-1063.
Atilgan S, Ozdemir T, Akkaya E U. A Sensitive and Selective Ratiometric Near IR Fluorescent Probe for Zinc Ions Based on the Dstyryl-Bodipy Fluorophore[J]. Org Lett, 2008,10(18):4065-4067. doi: 10.1021/ol801554t
Lu X Y, Zhu W H, Xie Y S. Near-IR Core-Substituted Naphthalenediimide Fluorescent Chemosensors for Zinc Ions:Ligand Effects on PET and ICT Channels[J]. Chem Eur J, 2010,16(28):8355-8364. doi: 10.1002/chem.v16:28
Sreenath K, Allen J R, Davidson M W. A FRET-Based Indicator for Imaging Mitochondrial Zinc Ions[J]. Chem Commun, 2011,47(42):11730-11732. doi: 10.1039/c1cc14580k
Woo H, You Y, Kim T. Fluorescence Ratiometric Zinc Sensors Based on Controlled Energy Transfer[J]. J Mater Chem, 2012,22(33):17100-17112. doi: 10.1039/c2jm33366j
Han Z X, Zhang X B, Li Z. Efficient Fluorescence Resonance Energy Transfer-Based Ratiometric Fluorescent Cellular Imaging Probe for Zn2+ Using a Rhodamine Spirolactam as a Trigger[J]. Anal Chem, 2010,82(8):3108-3113. doi: 10.1021/ac100376a
Luo J D, Xie Z L, Lam J W Y. Aggregation-Induced Emission of 1-Methyl-1, 2, 3, 4, 5-Pentaphenylsilole[J]. Chem Commun, 2001,18(18):1740-1741.
Hong Y N, Chen S J, Leung C W T. Fluorogenic Zn(Ⅱ) and Chromogenic Fe(Ⅱ) Sensors Based on Terpyridine-Substituted Tetraphenylethenes with Aggregation-Induced Emission Characteristics[J]. ACS Appl Mater Interfaces, 2011,3(9):3411-3418. doi: 10.1021/am2009162
Gabr M T, Pigge F C. A Selective Fluorescent Sensor for Zn2+ Based on Aggregation-Induced Emission(AIE) Activity and Metal Chelating Ability of Bis(2-pyridyl)-Diphenylethylene[J]. Dalton Trans, 2016,45:14039-14043. doi: 10.1039/C6DT02657E
Sun F, Zhang G X, Zhang D Q. Aqueous Fluorescence Turn-On Sensor for Zn2+ with a Tetraphenylethylene Compound[J]. Org Lett, 2011,13(24):6378-6381. doi: 10.1021/ol2026735
Akkaya E U, Huston M E, Czarnik A W. Chelation-Enhanced Fluorescence of Anthrylazamacrocycle Conjugate Probes in Aqueous Solution[J]. J Am Chem Soc, 1990,112:3590-3593. doi: 10.1021/ja00165a051
Cockrell G M, Zhang G, VanDerveer D G. Enhanced Metal Ion Selectivity of 2, 9-Di-(pyrid-2-yl)-1, 10-phenanthroline and Its Use as a Fluorescent Sensor for Cadmium(Ⅱ)[J]. J Am Chem Soc, 2008,130(4):1420-1430. doi: 10.1021/ja077141m
Ding Y B, Xie Y S, Li X. Selective and Sensitive "Turn-On" Fluorescent Zn2+ Sensors Basedon Di-and Tripyrrins with Readily Modulated Emission Wavelengths[J]. Chem Commun, 2011,47(19):5431-5433. doi: 10.1039/c1cc11493j
Ding Y, Li X, Li T. α'-Monoacylated and α, α'-and α, β'-Diacylated Dipyrrins as Highly Sensitive Fluorescence "Turn-on" Zn2+ Probes[J]. J Org Chem, 2013,78(11)53285338.
Ding Y B, Li T, Zhu W H. Highly Selective Colorimetric Sensing of Cyanide Based on Formation of Dipyrrin Adducts[J]. Org Biomol Chem, 2012,10(21):4201-4207. doi: 10.1039/c2ob25297j
Xie Y S, Wei P C, Li X. Macrocycle Contraction and Expansion of a Dihydrosapphyrin Isomer[J]. J Am Chem Soc, 2013,135(51):19119-19122. doi: 10.1021/ja4112644
Lu C L, Xu Z C, Cui J N. Ratiometric and Highly Selective Fluorescent Sensor for Cadmium under Physiological pH Range:A New Strategy to Discriminate Cadmium from Zinc[J]. J Org Chem, 2007,72(9):3554-3557. doi: 10.1021/jo070033y
Taki M, Wolford J L, O'Halloran T V. Emission Ratiometric Imaging of Intracellular Zinc:Design of a Benzoxazole Fluorescent Sensor and Its Application in Two-Photon Microscopy[J]. J Am Chem Soc, 2004,126(3):712-713. doi: 10.1021/ja039073j
Nolan E M, Jaworski J, Okamoto K I. QZ1 and QZ2:Rapid, Reversible Quinoline-Derivatized Fluoresceins for Sensing Biological Zn(Ⅱ)[J]. J Am Chem Soc, 2005,127(48):16812-16823. doi: 10.1021/ja052184t
Dennis A E, Smith R C. "Turn-On" Fluorescent Sensor for the Selective Detection of Zinc Ion by a Sterically-Encumbered Bipyridyl-Based Receptor[J]. Chem Commun, 2007:4641-4643.
Wei X D, Wang Q, Tang W Q. Combination of Pyrrole and Pyridine for Constructing Selective and Sensitive Zn2+ Probes[J]. Dyes Pigm, 2017,140:320-327. doi: 10.1016/j.dyepig.2017.01.064
Manandhar E, Cragg P J, Wallace K J. Detection of Zn(Ⅱ) Ions by Fluorescent Pyrene-Derived Molecular Probes[J]. Supramol Chem, 2014,26:141-150. doi: 10.1080/10610278.2013.835050
Henary M M, Wu Y G, Fahrni C J. Zinc(Ⅱ)-Selective Ratiometric Fluorescent Sensors Based on Inhibition of Excited-State Intramolecular Proton Transfer[J]. Chem Eur J, 2004,10(12):3015-3025. doi: 10.1002/(ISSN)1521-3765
Chen W H, Xing Y, Pang Y. A Highly Selective Pyrophosphate Sensor Based on ESIPT Turn-On in Water[J]. Org Lett, 2011,13(6):1362-1365. doi: 10.1021/ol200054w
An M, Kim B Y, Seo H. Fluorescence Sensor for Sequential Detection of Zinc and Phosphate Ions[J]. Spectrochim Acta, Part A, 2016,169:87-94. doi: 10.1016/j.saa.2016.06.026
Li X, Li J, Dong X W. A Novel 3-Hydroxychromone Fluorescence Sensor for Intracellular Zn2+ and Its Application in the Recognition of Prostate Cancer Cells[J]. Sens Actuators, B, 2017,245:129-136. doi: 10.1016/j.snb.2017.01.170
Wu J S, Liu W M, Zhang X Q. Fluorescence Turn On of Coumarin Derivatives by Metal Cations:A New Signaling Mechanism Based on CN Isomerization[J]. Org Lett, 2007,9(1):33-36. doi: 10.1021/ol062518z
Bhattacharyya A, Ghosh S, Makhal S C. Hydrazine Bridged Coumarin-Pyrimidine Conjugate as a Highly Selectiveand Sensitive Zn2+ Sensor:Spectroscopic Unraveling of Sensing Mechanism with Practical Application[J]. Spectrochim Acta, Part A, 2017,183:306-311. doi: 10.1016/j.saa.2017.04.035
Guo Z Q, Kim G H, Shin I. A Cyanine-Based Fluorescent Probe for Detecting Endogenous Zinc Ions in Live Cells and Organisms[J]. Biomaterials, 2012,33(31):7818-7827. doi: 10.1016/j.biomaterials.2012.07.014
Zhu H, Fan J L, Peng X J. Ratiometric Fluorescence Imaging of Lysosomal Zn2+ Release Under Oxidative Stress in Neural Stem Cells[J]. Biomater Sci, 2014,2(1):89-97. doi: 10.1039/C3BM60186B
Jinlong YAN , Weina WU , Yuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154
Jiakun BAI , Ting XU , Lu ZHANG , Jiang PENG , Yuqiang LI , Junhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002
Jun LUO , Baoshu LIU , Yunchang ZHANG , Bingkai WANG , Beibei GUO , Lan SHE , Tianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240
Yu SU , Xinlian FAN , Yao YIN , Lin WANG . From synthesis to application: Development and prospects of InP quantum dots. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2105-2123. doi: 10.11862/CJIC.20240126
Siyi ZHONG , Xiaowen LIN , Jiaxin LIU , Ruyi WANG , Tao LIANG , Zhengfeng DENG , Ao ZHONG , Cuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093
Peiran ZHAO , Yuqian LIU , Cheng HE , Chunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355
Zhongxin YU , Wei SONG , Yang LIU , Yuxue DING , Fanhao MENG , Shuju WANG , Lixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304
Meirong HAN , Xiaoyang WEI , Sisi FENG , Yuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150
Yuan ZHU , Xiaoda ZHANG , Shasha WANG , Peng WEI , Tao YI . Conditionally restricted fluorescent probe for Fe3+ and Cu2+ based on the naphthalimide structure. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 183-192. doi: 10.11862/CJIC.20240232
Qin Hou , Jiayi Hou , Aiju Shi , Xingliang Xu , Yuanhong Zhang , Yijing Li , Juying Hou , Yanfang Wang . Preparation of Cuprous Iodide Coordination Polymer and Fluorescent Detection of Nitrite: A Comprehensive Chemical Design Experiment. University Chemistry, 2024, 39(8): 221-229. doi: 10.3866/PKU.DXHX202312056
Hong CAI , Jiewen WU , Jingyun LI , Lixian CHEN , Siqi XIAO , Dan LI . Synthesis of a zinc-cobalt bimetallic adenine metal-organic framework for the recognition of sulfur-containing amino acids. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 114-122. doi: 10.11862/CJIC.20240382
Yan ZHAO , Xiaokang JIANG , Zhonghui LI , Jiaxu WANG , Hengwei ZHOU , Hai GUO . Preparation and fluorescence properties of Eu3+-doped CaLaGaO4 red-emitting phosphors. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1861-1868. doi: 10.11862/CJIC.20240242
Doudou Qin , Junyang Ding , Chu Liang , Qian Liu , Ligang Feng , Yang Luo , Guangzhi Hu , Jun Luo , Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034
Xinyu Liu , Weiran Hu , Zhengkai Li , Wei Ji , Xiao Ni . Algin Lab: Surging Luminescent Sea. University Chemistry, 2024, 39(5): 396-404. doi: 10.3866/PKU.DXHX202312021
Xiaoning TANG , Shu XIA , Jie LEI , Xingfu YANG , Qiuyang LUO , Junnan LIU , An XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149
Shanghua Li , Malin Li , Xiwen Chi , Xin Yin , Zhaodi Luo , Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003
Chun-Lin Sun , Yaole Jiang , Yu Chen , Rongjing Guo , Yongwen Shen , Xinping Hui , Baoxin Zhang , Xiaobo Pan . Construction, Performance Testing, and Practical Applications of a Home-Made Open Fluorescence Spectrometer. University Chemistry, 2024, 39(5): 287-295. doi: 10.3866/PKU.DXHX202311096
Jianjun Liu , Xue Yang , Chi Zhang , Xueyu Zhao , Zhiwei Zhang , Yongmei Chen , Qinghong Xu , Shao Jin . Preparation and Fluorescence Characterization of CdTe Semiconductor Quantum Dots. University Chemistry, 2024, 39(7): 307-315. doi: 10.3866/PKU.DXHX202311031
Zishuo Yi , Peng Liu , Yan Xu . Fluorescent “Chameleon”: A Popular Science Experiment Based on Dynamic Luminescence. University Chemistry, 2024, 39(9): 304-310. doi: 10.12461/PKU.DXHX202311079
Zijuan LI , Xuan LÜ , Jiaojiao CHEN , Haiyang ZHAO , Shuo SUN , Zhiwu ZHANG , Jianlong ZHANG , Yanling MA , Jie LI , Zixian FENG , Jiahui LIU . Synthesis of visual fluorescence emission CdSe nanocrystals based on ligand regulation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 308-320. doi: 10.11862/CJIC.20240138
Cells treated with probe 6 (a)in the absence and (b)presence of 1 mol/L external zinc ions. Cells treated with (c)25 μmol/L TPEN after treatment with 6 and 1 μmol/L ZnCl2. (d)Cells treated with 6 and 5 μmol/L CdCl2 and cells treated with 1 μmol/L ZnCl2. (e)after treatment with 6 and 5 μmol/L CdCl2. (f)Cells treated with 6 and 5 μmol/L Fe(ClO4)2 and (g)cells treated with 1 μmol/L ZnCl2 after treatment with 6 and 5 μmol/L Fe(ClO4)2. TPEN, N, N, N′, N′-tetrakis(2-pyridylmethyl)ethylenediamine; Scale bar=50 μm
(a)~(c) cells incubated with 20(10 mmol/L) for 0.5 h at 37 ℃. (d)~(f)Cells pretreated with Zn(AcO)2(20 mmol/L) for 0.5 h then incubated with 20(10 mmol/L) for 0.5 h. (a) and (d):bright field; (b) and (e):fluorescence; (c) and (f):overlay
(a)~(c)cells incubated with 28(15 μmol/L) for 2 h at 37 ℃. (d)~(f)cells pretreated with Zn(OAc)2(30 μmol/L) for 1 h then incubated with 28(15 μmol/L) for 2 h. (a) and (d):bright field; (b) and (e):fluorescence; (c) and (f):overlay