Citation: WANG Liang, LU Yuyuan, AN Lijia. Research Progress on Diffusion Dynamics of Ellipsoidal Particles[J]. Chinese Journal of Applied Chemistry, ;2017, 34(11): 1250-1258. doi: 10.11944/j.issn.1000-0518.2017.11.170329 shu

Research Progress on Diffusion Dynamics of Ellipsoidal Particles

  • Corresponding author: LU Yuyuan, yylu@ciac.ac.cn
  • Received Date: 11 September 2017
    Revised Date: 27 September 2017
    Accepted Date: 6 October 2017

    Fund Project: the International Partnership Program of CAS 121522KYSB20160015the Research Program of Frontier Sciences, CAS QYZDY-SSW-SLH027the National Natural Science Foundation of China 21674113the National Natural Science Foundation of China 21474109Supported by the National Natural Science Foundation of China (Nos. 21674113, 21474109);the International Partnership Program of CAS(No. 121522KYSB20160015) and the Research Program of Frontier Sciences, CAS (No. QYZDY-SSW-SLH027)

  • As one of the important anisotropic particles, ellipsoidal particles have widespread range of applications in biology, chemical engineering and materials. Further research on the diffusion dynamics of ellipsoidal particles not only contributes to our understanding of the diffusion dynamics of anisotropic particles, but also provides theoretical guidance for the design of materials containing anisotropic particles. Therefore, the diffusion dynamics of ellipsoidal particles has been a research focus in the diffusion of particles over 100 years and extensive theoretical, experimental and simulation studies have been conducted. Although significant progress has been made, systemic reviews on this field are rarely published up to now. In this review, we summarize the diffusion dynamics of ellipsoidal particles, including the relationship between size and diffusion properties of ellipsoidal particles under different hydrodynamic boundary conditions and the coupling effect of translational and rotational motion. Furthermore, we analyze the existing problems in this field and discuss the research trends briefly.
  • 加载中
    1. [1]

      Brown R. The Miscellaneous Botanical Works of Robert Brown[M]. 27. Ray Society, 1866.

    2. [2]

      Sacanna S, Pine D J. Shape-Anisotropic Colloids:Building Blocks for Complex Assemblies[J]. Curr Opin Colloid Interface Sci, 2011,16(2):96-105. doi: 10.1016/j.cocis.2011.01.003

    3. [3]

      Lee K J, Yoon J, Lahann J. Recent Advances with Anisotropic Particles[J]. Curr Opin Colloid Interface Sci, 2011,16(3):195-202. doi: 10.1016/j.cocis.2010.11.004

    4. [4]

      Frey E, Kroy K. Brownian Motion:A Paradigm of Soft Matter and Biological Physics[J]. Ann Phys-Berlin, 2005,14(1/2/3):20-50.  

    5. [5]

      Li X, Vlahovska P M, Karniadakis G E. Continuum-and Particle-Based Modeling of Shapes and Dynamics of Red Blood Cells in Health and Disease[J]. Soft Matter, 2013,9(1):28-37. doi: 10.1039/C2SM26891D

    6. [6]

      Delsaulx J. Thermo-Dynamic Origin of the Brownian Motions[J]. J Microsc, 1877,18(1):1-7.  

    7. [7]

      Einstein A. The Motion of Elements Suspended in Static Liquids as Claimed in the Molecular Kinetic Theory of Heat[J]. Ann Phys-Berlin, 1905,17(8):549-560.

    8. [8]

      Einstein A. Theoretical Remarks on the Brownian Motion[J]. Z Elektrochem Angew Phys Chem, 1907,13:41-42. doi: 10.1002/bbpc.v13:6

    9. [9]

      von Smoluchowski M. zur Kinetischen Theorie der Brownschen Molekularbewegung und der Suspensionen[J]. Ann Phys-Berlin, 1906,326(14):756-780. doi: 10.1002/(ISSN)1521-3889

    10. [10]

      Langevin P. The Theory of Brownian Movement[J]. C R Hebd Seances Acad Sci, 1908,146:530-533.  

    11. [11]

      Perrin J. Brownian Motion and Molecular Reality[J]. Ann Chim Phys, 1909,18:5-114.  

    12. [12]

      Schmidt J R, Skinner J L. Hydrodynamic Boundary Conditions, the Stokes-Einstein Law, and Long-Time Tails in the Brownian Limit[J]. J Chem Phys, 2003,119(15):8062-8068. doi: 10.1063/1.1610442

    13. [13]

      Bian X, Kim C, Karniadakis G E. 111 Years of Brownian Motion[J]. Soft Matter, 2016,12(30):6331-6346. doi: 10.1039/C6SM01153E

    14. [14]

      Zwanzig R, Harrison A K. Modifications of the Stokes-Einstein Formula[J]. J Chem Phys, 1985,83(11):5861-5862. doi: 10.1063/1.449616

    15. [15]

      Thorneywork A L, Aarts D, Horbach J. Self-Diffusion in Two-Dimensional Binary Colloidal Hard-Sphere Fluids[J]. Phys Rev E, 2017,95(1)012614. doi: 10.1103/PhysRevE.95.012614

    16. [16]

      Sharma M, Yashonath S. Breakdown of the Stokes-Einstein Relationship:Role of Interactions in the Size Dependence of Self-Diffusivity[J]. J Phys Chem B, 2006,110(34):17207-17211. doi: 10.1021/jp064364a

    17. [17]

      Ileri N, Faller R, Palazoglu A. Molecular Transport of Proteins through Nanoporous Membranes Fabricated by Interferometric Lithography[J]. Phys Chem Chem Phys, 2013,15(3):965-971. doi: 10.1039/C2CP43400H

    18. [18]

      Krushelnitsky A. Intermolecular Electrostatic Interactions and Brownian Tumbling in Protein Solutions[J]. Phys Chem Chem Phys, 2006,8(18):2117-2128. doi: 10.1039/b517448a

    19. [19]

      Adamczyk Z, Cichocki B, Ekiel-Jezewska M L. Fibrinogen Conformations and Charge in Electrolyte Solutions Derived from DLS and Dynamic Viscosity Measurements[J]. J Colloid Interface Sci, 2012,385(1):244-257. doi: 10.1016/j.jcis.2012.07.010

    20. [20]

      Winkler R G. Conformational and Rheological Properties of Semiflexible Polymers in Shear Flow[J]. J Chem Phys, 2010,133(16)164905. doi: 10.1063/1.3497642

    21. [21]

      Kantsler V, Goldstein R E. Fluctuations, Dynamics, and the Stretch-Coil Transition of Single Actin Filaments in Extensional Flows[J]. Phys Rev Lett, 2012,108(3)038103. doi: 10.1103/PhysRevLett.108.038103

    22. [22]

      Bereolos P, Talbot J, Allen M P. Transport-Properties of the Hard Ellipsoid Fluid[J]. J Chem Phys, 1993,99(8):6087-6097. doi: 10.1063/1.466221

    23. [23]

      Han Y, Alsayed A M, Nobili M. Brownian Motion of an Ellipsoid[J]. Science, 2006,314(5799):626-630. doi: 10.1126/science.1130146

    24. [24]

      Peng Y, Lai L P, Tai Y S. Diffusion of Ellipsoids in Bacterial Suspensions[J]. Phys Rev Lett, 2016,116(6)068303. doi: 10.1103/PhysRevLett.116.068303

    25. [25]

      Yang O, Peng Y, Liu Z Y. Dynamics of Ellipsoidal Tracers in Swimming Algal Suspensions[J]. Phys Rev E, 2016,94(4)042601. doi: 10.1103/PhysRevE.94.042601

    26. [26]

      Marino R, Eichhorn R, Aurell E. Entropy Production of a Brownian Ellipsoid in the Overdamped Limit[J]. Phys Rev E, 2016,93(1)012132. doi: 10.1103/PhysRevE.93.012132

    27. [27]

      Deng M G, Pan W X, Karniadakis G E. Anisotropic Single-Particle Dissipative Particle Dynamics Model[J]. J Comput Phys, 2017,336:481-491. doi: 10.1016/j.jcp.2017.01.033

    28. [28]

      Perrin F. The Brownien Movement of an Ellipsoid-The Dielectric Dispersion of Ellipsoidal Molecules[J]. J Phys Radium, 1934,5:497-511. doi: 10.1051/jphysrad:01934005010049700

    29. [29]

      Perrin F. Brownian Movement of an Ellipsoid (Ⅱ)-Free Rotation and Depolarisation of Fluourescences.-Translation and Diffusion of Ellipsoidal Molecules[J]. J Phys Radium, 1936,7:1-11. doi: 10.1051/jphysrad:01936007010100

    30. [30]

      Oberbeck A. Ueber Stationäre Flüssigkeitsbewegungen mit Berücksichtigung der Inneren Reibung[J]. J Reine Angew Math, 1876,81:62-80.  

    31. [31]

      Edwardes D. The Strain in an Infinite Elastic Solid with an Ellipsoidal Cavity, due to Certain Surface Displacements[J]. Quart J Pure Appl Math, 1893,26:260-278.

    32. [32]

      Han Y, Alsayed A, Nobili M. Quasi-Two-Dimensional Diffusion of Single Ellipsoids:Aspect Ratio and Confinement Effects[J]. Phys Rev E, 2009,80(1)011403.  

    33. [33]

      Happel J, Brenner H. Low Reynolds Number Hydrodynamics:With Special Applications to Particulate Media[M]. 1.Springer Science & Business Media, 2012.

    34. [34]

      Boniello G, Stocco A, Gross M. Translational Viscous Drags of an Ellipsoid Straddling an Interface Between Two Fluids[J]. Phys Rev E, 2016,94(1)012602. doi: 10.1103/PhysRevE.94.012602

    35. [35]

      Zheng Z Y, Han Y L. Self-Diffusion in Two-Dimensional Hard Ellipsoid Suspensions[J]. J Chem Phys, 2010,133(12)124509. doi: 10.1063/1.3490669

    36. [36]

      Spiess H W, Schweitzer D, Haeberlen U. Spin-Rotation Interaction and Anisotropic Chemical Shift in 13CS2[J]. J Magn Reson(1969), 1971,5(1):101-108.  

    37. [37]

      Hu C M, Zwanzig R. Rotational Friction Coefficients for Spheroids with Slipping Boundary-Condition[J]. J Chem Phys, 1974,60(11):4354-4357. doi: 10.1063/1.1680910

    38. [38]

      Tang S A, Evans G T. A Critique of Slip and Stick Hydrodynamics for Ellipsoidal Bodies[J]. Mol Phys, 1993,80(6):1443-1457. doi: 10.1080/00268979300103131

    39. [39]

      Mazur P, Bedeaux D. A Generalization of Faxén's Theorem to Nonsteady Motion of a Sphere Through an Incompressible Fluid in Arbitrary Flow[J]. Physica, 1974,76(2):235-246. doi: 10.1016/0031-8914(74)90197-9

    40. [40]

      Albano A, Bedeaux D, Mazur P. On the Motion of a Sphere with Arbitrary Slip in a Viscous Incompressible Fluid[J]. Physica A, 1975,80(1):89-97. doi: 10.1016/0378-4371(75)90148-X

    41. [41]

      DoiM, Edwards S F. The Theory of Polymer Dynamics[M]. 73. Oxford University Press, 1988.

    42. [42]

      Vasanthi R, Ravichandran S, Bagchi B. Needlelike Motion of Prolate Ellipsoids in the Sea of Spheres[J]. J Chem Phys, 2001,114(18):7989-7992. doi: 10.1063/1.1363674

    43. [43]

      Vasanthi R, Bhattacharyya S, Bagchi B. Anisotropic Diffusion of Spheroids in Liquids:Slow Orientational Relaxation of the Oblates[J]. J Chem Phys, 2002,116(3):1092-1096. doi: 10.1063/1.1428343

    44. [44]

      Chapman S, Cowling T G. The Mathematical Theory of Non-uniform Gases:An Account of the Kinetic Theory of Viscosity, Thermal Conduction and Diffusion in Gases[M]. Cambridge University Press, 1970.

    45. [45]

      Grima R, Yaliraki S N. Brownian Motion of an Asymmetrical Particle in a Potential Field[J]. J Chem Phys, 2007,127(8)084511. doi: 10.1063/1.2759485

    46. [46]

      Fernandes M X, De La Torre J G. Brownian Dynamics Simulation of Rigid Particles of Arbitrary Shape in External Fields[J]. Biophys J, 2002,83(6):3039-3048. doi: 10.1016/S0006-3495(02)75309-5

    47. [47]

      Aurell E, Bo S, Dias M. Diffusion of a Brownian Ellipsoid in a Force Field[J]. Europhys Lett, 2016,114(3)30005. doi: 10.1209/0295-5075/114/30005

    48. [48]

      Brenner H. Taylor Dispersion in Systems of Sedimenting Nonspherical Brownian Particles.2.Homogeneous Ellipsoidal Particles[J]. J Colloid Interface Sci, 1981,80(2):548-588. doi: 10.1016/0021-9797(81)90214-9

    49. [49]

      Ould-Kaddour F, Levesque D. Molecular-Dynamics Investigation of Tracer Diffusion in a Simple Liquid:Test of the Stokes-Einstein Law[J]. Phys Rev E, 2001,63(1)011205.  

    50. [50]

      Bhattacharyya S, Bagchi B. Anomalous Diffusion of Small Particles in Dense Liquids[J]. J Chem Phys, 1997,106(5):1757-1763. doi: 10.1063/1.473316

    51. [51]

      Li Z G. Critical Particle Size Where the Stokes-Einstein Relation Breaks Down[J]. Phys Rev E, 2009,80(6)061204. doi: 10.1103/PhysRevE.80.061204

  • 加载中
    1. [1]

      Baohua LÜYuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105

    2. [2]

      Tianqi Bai Kun Huang Fachen Liu Ruochen Shi Wencai Ren Songfeng Pei Peng Gao Zhongfan Liu . 石墨烯厚膜热扩散系数与微观结构的关系. Acta Physico-Chimica Sinica, 2025, 41(3): 2404024-. doi: 10.3866/PKU.WHXB202404024

    3. [3]

      Yongming Guo Jie Li Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057

    4. [4]

      Cuicui Yang Bo Shang Xiaohua Chen Weiquan Tian . Understanding the Wave-Particle Duality and Quantization of Confined Particles Starting from Classic Mechanics. University Chemistry, 2025, 40(3): 408-414. doi: 10.12461/PKU.DXHX202407066

    5. [5]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    6. [6]

      Donghui PANYuping XUXinyu WANGLizhen WANGJunjie YANDongjian SHIMin YANGMingqing CHEN . Preparation and in vivo tracing of 68Ga-labeled PM2.5 mimetic particles for positron emission tomography imaging. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 669-676. doi: 10.11862/CJIC.20230468

    7. [7]

      Lina Liu Xiaolan Wei Jianqiang Hu . Exploration of Subject-Oriented Undergraduate Comprehensive Chemistry Experimental Teaching Based on the “STS Concept”: Taking the Experiment of Gold Nanoparticles as an Example. University Chemistry, 2024, 39(10): 337-343. doi: 10.12461/PKU.DXHX202405112

Metrics
  • PDF Downloads(6)
  • Abstract views(396)
  • HTML views(96)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return