Citation: DING Hao, YAN Fei, ZHENG Wenjing, GUO Weiliang, SU Bin. Electrochemical Detection of Antioxidants in Cosmetic Samples Using Mesoporous Silica Film and Confined Micelles[J]. Chinese Journal of Applied Chemistry, ;2017, 34(11): 1307-1313. doi: 10.11944/j.issn.1000-0518.2017.11.170251 shu

Electrochemical Detection of Antioxidants in Cosmetic Samples Using Mesoporous Silica Film and Confined Micelles

  • Corresponding author: SU Bin, subin@zju.edu.cn
  • Received Date: 18 July 2017
    Revised Date: 11 August 2017
    Accepted Date: 30 August 2017

    Fund Project: the National Natural Science Foundation of China 21575126the Natural Science Foundation of Zhejiang Province LR14B050001the National Natural Science Foundation of China 21335001Supported by the National Natural Science Foundation of China(No.21335001, No.21575126), the Natural Science Foundation of Zhejiang Province(No.LR14B050001)

Figures(4)

  • This work presents a novel approach for the electrochemical determination of butylated hydroxyanisole(BHA) and tert-butylhydroquinone(TBHQ) in real cosmetic samples using the indium tin oxide(ITO) electrodes modified with vertically aligned mesoporous silica channels retaining micelles of cetyltrimethylammonium bromide(CTAB). The ultra-small pore size of the channels, namely 2.3 nm in diameter, rendered the size screening capability of the electrode. Meanwhile, the hydrocarbon tails of CTAB provided a hydrophobic microenvironment, which enabled the rapid extraction and preconcentration of lipophilic organic analytes from sample solutions. An excellent analytical sensitivity, a wide dynamic range and a low limit of detection were obtained for both antioxidants under optimized conditions. Recovery values between 96.4% and 104% indicate the practical usefulness of the proposed sensor.
  • 加载中
    1. [1]

      Ziyatdinova G, Os'kina K, Ziganshina E. Simultaneous Determination of TBHQ and BHA on a MWNT-Brij® 35 Modified Electrode in Micellar Media[J]. Anal Methods, 2015,7(19):8344-8351. doi: 10.1039/C5AY01973G

    2. [2]

      Guan Y, Chu Q, Fu L. Determination of Antioxidants in Cosmetics by Micellar Electrokinetic Capillary Chromatography with Electrochemical Detection[J]. J Chromatogr A, 2005,1074(1/2):201-204.

    3. [3]

      Wang J Y, Wu H L, Chen Y. Quantitative Determination of Butylated Hydroxyanisole and n-Propyl Gallate in Cosmetics Using Three-Dimensional Fluorescence Coupled with Second-Order Calibration[J]. Talanta, 2013,116:347-353. doi: 10.1016/j.talanta.2013.05.028

    4. [4]

      Capitan-Vallvey L F, Valencia M C, Nicolas E A. Monoparameter Sensors for the Determination of the Antioxidants Butylated Hydroxyanisole and n-Propyl Gallate in Foods and Cosmetics by Flow Injection Spectrophotometry[J]. Analyst, 2001,126(6):897-902. doi: 10.1039/b101162f

    5. [5]

      Capitan-Vallvey L F, Valencia M C, Nicolas E A. Simple Resolution of Butylated Hydroxyanisole and n-Propyl Gallate in Fatty Foods and Cosmetics Samples by Flow-Injection Solid-Phase Spectrophotometry[J]. J Food Sci, 2003,68(5):1595-1599. doi: 10.1111/jfds.2003.68.issue-5

    6. [6]

      Cacho J I, Campillo N, Viñas P. Determination of Synthetic Phenolic Antioxidants in Edible Oils Using Microvial Insert Large Volume Injection Gas-Chromatography[J]. Food Chem, 2016,200:249-254. doi: 10.1016/j.foodchem.2016.01.026

    7. [7]

      Chen M, Hu X J, Tai Z G. Determination of Four Synthetic Phenolic Antioxidants in Edible Oils by High-Performance Liquid Chromatography with Cloud Point Extraction Using Tergitol TMN-6[J]. Food Anal Methods, 2013,6(1):28-35. doi: 10.1007/s12161-012-9413-7

    8. [8]

      Biparva P, Ehsani M, Hadjmohammadi M R. Dispersive Liquid-Liquid Microextraction Using Extraction Solvents Lighter than Water Combined with High Performance Liquid Chromatography for Determination of Synthetic Antioxidants in Fruit Juice Samples[J]. J Food Compos Anal, 2012,27(1):87-94. doi: 10.1016/j.jfca.2012.04.002

    9. [9]

      Touati R, Santos S A O, Rocha S M. The Potential of Cork from Quercus Suber L. Grown in Algeria as a Source of Bioactive Lipophilic and Phenolic Compounds[J]. Ind Crop Prod, 2015,76:936-945. doi: 10.1016/j.indcrop.2015.07.074

    10. [10]

      Rodil R, Quintana J B, Basaglia G. Determination of Synthetic Phenolic Antioxidants and Their Metabolites in Water Samples by Downscaled Solid-Phase Extraction, Silylation and gas Chromatography-Mass Spectrometry[J]. J Chromatogr A, 2010,1217(41):6428-6435. doi: 10.1016/j.chroma.2010.08.020

    11. [11]

      Wang P, Han C, Zhou F. Electrochemical Determination of Tert-Butylhydroquinone and Butylated Hydroxyanisole at Choline Functionalized Film Supported Graphene Interface[J]. Sens Actuators B, 2016,224:885-891. doi: 10.1016/j.snb.2015.10.098

    12. [12]

      Sousa Carvalho R M, Yotsumoto Neto S, Carvalho Silva F. A Sensitive Sensor Based on CuTSPc and Reduced Graphene Oxide for Simultaneous Determination of the BHA and TBHQ Antioxidants in Biodiesel Samples[J]. Electroanalysis, 2016,28(12):2930-2938. doi: 10.1002/elan.201600187

    13. [13]

      Lin X, Ni Y, Kokot S. Glassy Carbon Electrodes Modified with Gold Nanoparticles for the Simultaneous Determination of Three Food Antioxidants[J]. Anal Chim Acta, 2013,765:54-62. doi: 10.1016/j.aca.2012.12.036

    14. [14]

      Niu X, Yang W, Guo H. A Novel Strategy for the Detection of tert-Butylhydroquinone Based on Graphene Quantum Dots and Silver Nanoparticle Modified Glass Carbon Electrode[J]. Can J Chem, 2015,93(6):648-654. doi: 10.1139/cjc-2014-0339

    15. [15]

      Roushani M, Sarabaegi M. Electrochemical Detection of Butylated Hydroxyanisole Based on Glassy Carbon Electrode Modified by Iridium Oxide Nanoparticles[J]. J Electroanal Chem, 2014,717:147-152.  

    16. [16]

      Caramit R P, Antunes Araújo A S, Fogliatto D K. Carbon-Nanotube-Modified Screen-Printed Electrodes, a Cationic Surfactant, and a Peak Deconvolution Procedure:Alternatives to Provide Satisfactory Simultaneous Determination of Three Synthetic Antioxidants in Complex Samples[J]. Anal Methods, 2015,7(9):3764-3771. doi: 10.1039/C4AY02875A

    17. [17]

      Caramit R P, de Freitas Andrade A G, Gomes de Souza J B. A New Voltammetric Method for the Simultaneous Determination of the Antioxidants TBHQ and BHA in Biodiesel Using Multi-Walled Carbon Nanotube Screen-Printed Electrodes[J]. Fuel, 2013,105:306-313. doi: 10.1016/j.fuel.2012.06.062

    18. [18]

      Gan T, Zhao A X, Wang S H. Hierarchical Triple-Shelled Porous Hollow Zinc Oxide Spheres Wrapped in Graphene Oxide as Efficient Sensor Material for Simultaneous Electrochemical Determination of Synthetic Antioxidants in Vegetable Oil[J]. Sens Actuators B, 2016,235:707-716. doi: 10.1016/j.snb.2016.05.137

    19. [19]

      Cui M, Liu S, Lian W J. A Molecularly-Imprinted Electrochemical Sensor Based on a Graphene-Prussian Blue Composite-Modified Glassy Carbon Electrode for the Detection of Butylated Hydroxyanisole in Foodstuffs[J]. Analyst, 2013,138(20):5949-5955. doi: 10.1039/c3an01190a

    20. [20]

      dos Santos Moretti E, de Oliveira F M, Scheel G L. Synthesis of Surface Molecularly Imprinted Poly(methacrylic acid-hemin) on Carbon Nanotubes for the Voltammetric Simultaneous Determination of Antioxidants from Lipid Matrices and Biodiesel[J]. Electrochim Acta, 2016,212:322-332. doi: 10.1016/j.electacta.2016.06.174

    21. [21]

      Yue X, Song W, Zhu W. In Situ Surface Electrochemical Co-Reduction Route Towards Controllable Construction of AuNPs/ERGO Electrochemical Sensing Platform for Simultaneous Determination of BHA and TBHQ[J]. Electrochim Acta, 2015,182:847-855. doi: 10.1016/j.electacta.2015.09.162

    22. [22]

      Rao H, Wang X, Du X. Mini Review:Electroanalytical Sensors of Mesoporous Silica Materials[J]. Anal Lett, 2013,46(18):2789-2812. doi: 10.1080/00032719.2013.816962

    23. [23]

      Serrano M B, Despas C, Herzog G. Mesoporous Silica Thin Films for Molecular Sieving and Electrode Surface Protection Against Biofouling[J]. Electrochem Commun, 2015,52:34-36. doi: 10.1016/j.elecom.2015.01.010

    24. [24]

      Walcarius A, Mercier L. Mesoporous Organosilica Adsorbents:Nanoengineered Materials for Removal of Organic and Inorganic Pollutants[J]. J Mater Chem, 2010,20(22)4478. doi: 10.1039/b924316j

    25. [25]

      Sun Q, Yan F, Yao L. Anti-Biofouling Isoporous Silica-Micelle Membrane Enabling Drug Detection in Human Whole Blood[J]. Anal Chem, 2016,88(17):8364-8368. doi: 10.1021/acs.analchem.6b02091

    26. [26]

      Yao L, Yan F, Su B. Highly Ordered Surfactant Micelles Function as the Extraction Matrix for Direct Electrochemical Detection of Halonitrobenzenes at the ppb Level[J]. Analyst, 2016,141(7):2303-2307. doi: 10.1039/C5AN02439K

    27. [27]

      Yan F, Su B. Tailoring Molecular Permeability of Nanochannel-Micelle Membranes for Electrochemical Analysis of Antioxidants in Fruit Juices without Sample Treatment[J]. Anal Chem, 2016,88(22):11001-11006. doi: 10.1021/acs.analchem.6b02823

    28. [28]

      Zheng W, Yan F, Su B. Electrochemical Determination of Chloramphenicol in Milk and Honey Using Vertically Ordered Silica Mesochannels and Surfactant Micelles as the Extraction and Anti-Fouling Element[J]. J Electroanal Chem, 2016,781:383-388. doi: 10.1016/j.jelechem.2016.04.017

    29. [29]

      Teng Z, Zheng G, Dou Y. Highly Ordered Mesoporous Silica Films with Perpendicular Mesochannels by a Simple Stober-Solution Growth Approach[J]. Angew Chem Int Ed, 2012,51(9):2173-2177. doi: 10.1002/anie.201108748

    30. [30]

      Etienne M, Quach A, Grosso D. Molecular Transport into Mesostructured Silica Thin Films:Electrochemical Monitoring and Comparison Between p6m, P63/mmc, and Pm3n Structures[J]. Chem Mater, 2007,19(4):844-856. doi: 10.1021/cm0625068

    31. [31]

      Yan F, Lin X, Su B. Vertically Ordered Silica Mesochannel Films:Electrochemistry and Analytical Applications[J]. Analyst, 2016,141(12):3482-3495. doi: 10.1039/C6AN00146G

  • 加载中
    1. [1]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    2. [2]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    3. [3]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    4. [4]

      Shuhui Li Xucen Wang Yingming Pan . Exploring the Role of Electrochemical Technologies in Everyday Life. University Chemistry, 2025, 40(3): 302-307. doi: 10.12461/PKU.DXHX202406059

    5. [5]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    6. [6]

      Meiqing Yang Lu Wang Haozi Lu Yaocheng Yang Song Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-. doi: 10.3866/PKU.WHXB202310046

    7. [7]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    8. [8]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    9. [9]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    10. [10]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

    11. [11]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    12. [12]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    13. [13]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    14. [14]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    15. [15]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    16. [16]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    17. [17]

      Qianwen Han Tenglong Zhu Qiuqiu Lü Mahong Yu Qin Zhong . 氢电极支撑可逆固体氧化物电池性能及电化学不对称性优化. Acta Physico-Chimica Sinica, 2025, 41(1): 2309037-. doi: 10.3866/PKU.WHXB202309037

    18. [18]

      Liangzhen Hu Li Ni Ziyi Liu Xiaohui Zhang Bo Qin Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001

    19. [19]

      Jiaxin Su Jiaqi Zhang Shuming Chai Yankun Wang Sibo Wang Yuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-. doi: 10.3866/PKU.WHXB202408012

    20. [20]

      Zhengli Hu Jia Wang Yi-Lun Ying Shaochuang Liu Hui Ma Wenwei Zhang Jianrong Zhang Yi-Tao Long . Exploration of Ideological and Political Elements in the Development History of Nanopore Electrochemistry. University Chemistry, 2024, 39(8): 344-350. doi: 10.3866/PKU.DXHX202401072

Metrics
  • PDF Downloads(8)
  • Abstract views(697)
  • HTML views(163)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return