Citation: LI Yanqing, ZHANG Shenghan, XU Peiyao, TAN Yu. Photoelectric Activity and Enhancing Mechanism of TiO2 Electrodes Coated with Nature Plant Pigments[J]. Chinese Journal of Applied Chemistry, ;2017, 34(11): 1314-1320. doi: 10.11944/j.issn.1000-0518.2017.11.160509 shu

Photoelectric Activity and Enhancing Mechanism of TiO2 Electrodes Coated with Nature Plant Pigments

  • Corresponding author: ZHANG Shenghan, zhang-shenghan@163.com
  • Received Date: 15 December 2016
    Revised Date: 6 March 2017
    Accepted Date: 29 March 2017

    Fund Project: the Fundamental Research Funds for the Central Universities of China 2014MS153Supported by the Fundamental Research Funds for the Central Universities of China(No.2014MS153)

Figures(7)

  • In order to study the sensitization mechanism of chlorophyll, ethanol extract of spinach chlorophyll served as sensitizers of TiO2 nanotubes electrodes, and the aqueous solution of Na2SO4 was used as electrolyte to measure the photocurrent activity of the as-obtained electrodes. Photocurrent response results show that the TiO2 nanotubes electrode changes its photocurrent value after sensitizing, while the pristine Ti electrode has weak photocurrent response. Cyclic voltammetry curves indicate that the oxidation of sensitized TiO2 electrodes is more reactive than unsensitized ones. The incident photocurrent conversion efficiency(IPCE) of TiO2 electrodes sensitized by extracts from different chlorophyll concentrations was tested. The result shows that, at optimized concentration(7.123~71.23 μg/L), sensitizers can increase the IPCE value of electrodes over 2 times than that before sensitizing, while at high concentration(7123 μg/L), the IPCE value decreases obviously. It is found that the characteristic peak positions of the IPCE spectra change very little between sensitized and unsensitized electrodes. The absorption spectrum of spinach pigment and the sensitization efficiency(SEλ) spectra reveal the mechanism of the enhancement of photoelectric activity as chlorophyll molecules react with photo-generated hole of TiO2 and reduce the rate of electron-hole recombination, resulting in an increased IPCE value of TiO2 nanotube electrodes.
  • 加载中
    1. [1]

      YANG Chunhong, CHANG Wenrui. Biological Energy Based on the Principles of Photosynthesis from Basic Theory to Energy Application[J]. Acta Biochim Biophys Sin, 2011,27(12)992.  

    2. [2]

      Yen T C, Cheng Y C. Electronic Coherence Effects in Photosynthetic Light Harvesting[J]. Procedia Chem, 2011(3):211-221.  

    3. [3]

      Lam Eric, Ortiz William, Maikin Richard. Chlorophyll a/b Proteins of Photosystem Ⅰ[J]. FEBS Lett, 1984,168(1):10-14. doi: 10.1016/0014-5793(84)80197-0

    4. [4]

      HU Mingbo. Study of Ions Recognition by Chlorophyll-Porphyrin Compounds[D]. Jinan:Shandong Normal University, 2009(in Chinese). 

    5. [5]

      GUO Lihe. Science Magazine Selected the Ten Major Scientific Breakthroughs in 2011——An Introduction to the Research Results of Photosynthesis System Ⅱ[J]. Chinese J Cell Biol, 2012,34(3):295-297.  

    6. [6]

      Karpulevich A A, Maksimov E G, Sluchanko N N. Highly Efficient Energy Transfer from Quantum Dot to Allophycocyanin in Hybrid Structures[J]. J Photochem Photobiol B, 2016,160:96-101. doi: 10.1016/j.jphotobiol.2016.03.048

    7. [7]

      Grondelle R, Dekker J P, Gillbro T. Energy Transfer and Trapping in Photosynthesis[J]. Biochim Biophys Acta, 1994,1187(1):1-65. doi: 10.1016/0005-2728(94)90166-X

    8. [8]

      Nagate M, Amano M, Joke T. Immobilization and Photocurrent Activity of a Light-Harvesting Antenna Complex Ⅱ, LHCⅡ, Isolated from a Plant on Electrodes[J]. ACS Macro Lett, 2012,1(2):296-299. doi: 10.1021/mz200163e

    9. [9]

      Shalini S, Balasundapranhu R, Prasanna S. Review on Natural Dye Sensitized Solar Cells:Operation, Materials and Methods[J]. Renew Sust Energ Rev, 2015,51:1306-1325. doi: 10.1016/j.rser.2015.07.052

    10. [10]

      Kondo M, Iida K, Dewa T. Photocurrent and Electronic Activities of Oriented-His-Tagged Photosynthetic Light-Harvesting/Reaction Center Core Complexes Assembled onto a Gold Electrode[J]. Biomacromolecules, 2012,13(2):432-438. doi: 10.1021/bm201457s

    11. [11]

      O'rehan B, Grärzel M. A Low Cost High Efficiency Solar Cell Based on Dye-Sensitized Colloidal TiO2 Films[J]. Nature, 1991,353(6346):737-739. doi: 10.1038/353737a0

    12. [12]

      Kern R, Sastrawan R, Ferber J. Modeling and Interpretation of Electrical Impedance Spectra of Dye Solar Cells Operated under Open-Circuit Conditions[J]. Electrochim Acta, 2002,47(26):4213-4225. doi: 10.1016/S0013-4686(02)00444-9

    13. [13]

      Gong J W, Sumathy K, Qiao Q Q. Review on Dye-Sensitized Solar Cells(DSSCs):Advanced Techniques and Research Trends[J]. Renew Sust Energ Rev, 2017,68:234-246. doi: 10.1016/j.rser.2016.09.097

    14. [14]

      Simon M, Aswani Y, Peng G. Dye-sensitized Solar Cells with 13% Efficiency Achieved Through the Molecular Engineering of Porphyrin Sensitizers[J]. Nat Chem, 2014,6(3):242-247. doi: 10.1038/nchem.1861

    15. [15]

      ZHANG Shenghan, LI Yanqing, LI Xiaomin. Preparation and Performance of Natural Dyes for Dye-Sensitized Solar Cells[J]. Environ Chem, 2016,35(8):1676-1681. doi: 10.7524/j.issn.0254-6108.2016.08.2015120104

    16. [16]

      LIANG Kexin. Performance Study of Modified TiO2 Nanotube Arrays Photoanode for Hydrogen Production by Water Splitting[D]. Baoding:North China Electric Power University, 2013(in Chinese). 

    17. [17]

      YE Jiyu. Arnon Calculation Formula for Determination of Chlorophyll Content[J]. Plant Physiol Commun, 1985(6)69.  

    18. [18]

      GU Dongmei, ZHANG Jianzhao, ZHANG Ji. Different Electron-withdrawing Groups in π Spacers Effect on the Performance of Dye-Sensitized Solar Cells Based on Triphenylamine-Cyanoacrylic Acid Dyes[J]. Chem J Chinese Univ, 2015,36(7):1344-1350.  

    19. [19]

      SONG Xinqi, ZHOU Futian, LIU Jianbo. Photo Chemical:Principle, Technology, Application[M]. Beijing:Higher Education Press, 2001, 126-128(in Chinese).

    20. [20]

      ZHANG Wei. Prepartion and Photoelectrochemical Properties of Nanostructured TiO2 Thin Films[D]. Shanghai:Fudan University, 2009(in Chinese). 

    21. [21]

      GAO Lian, ZHENG Shan, ZHANG Qinghong. Nano Titania Photocatalytic Materials and Applications[M]. Beijing:Chemical Industry Press, 2002:114-115(in Chinese).

    22. [22]

      Rani M, Tripathi S K. Electron Rransfer Roperties of Organic Dye Sensitized ZnO and ZnO/TiO2 Photoanode for Dye Sensitized Solar Cells[J]. Renew Sust Energ Rev, 2016,61:97-107. doi: 10.1016/j.rser.2016.03.012

    23. [23]

      Arbour C, Sharma K, Langfordc H. Electron Trapping in Colloidal TiO2 Photocatalysts:20 ps to 10 ns Kinetics. In Photochemistry and Photophysics of Coordination Compounds[C]//Proceedings of the Seventh International Symposium on the Photochemistry and Photophysics of Coordination Compounds, Elmau, Germany, March 29-April 2, 1987:277-284.

    24. [24]

      Umena Y, Kawakami K, Shen J R. Crystal Structure of Oxygen-Evolving Photosystem Ⅱ at a Resolution of 1.9Å[J]. Nature, 2011,473(7345):55-60. doi: 10.1038/nature09913

  • 加载中
    1. [1]

      Qin Li Kexin Yang Qinglin Yang Xiangjin Zhu Xiaole Han Tao Huang . Illuminating Chlorophyll: Innovative Chemistry Popularization Experiment. University Chemistry, 2024, 39(9): 359-368. doi: 10.3866/PKU.DXHX202309059

    2. [2]

      Tao Cao Fang Fang Nianguang Li Yinan Zhang Qichen Zhan . Green Synthesis of p-Hydroxybenzonitrile Catalyzed by Spinach Extracts under Red-Light Irradiation: Research and Exploration of Innovative Experiments for Pharmacy Undergraduates. University Chemistry, 2024, 39(5): 63-69. doi: 10.3866/PKU.DXHX202309098

    3. [3]

      Zhanhong Tong Xiaoyu Xie Fangfang Chen . Appreciating Autumn Leaves: A Brief Analysis of the Causes behind “Frost Leaves Redder than February Flowers”. University Chemistry, 2024, 39(9): 183-188. doi: 10.12461/PKU.DXHX202404005

    4. [4]

      Fanxin Kong Hongzhi Wang Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, 2024, 43(5): 100287-100287. doi: 10.1016/j.cjsc.2024.100287

    5. [5]

      Zhiqiang WangYajie GaoTianjun WangWei ChenZefeng RenXueming YangChuanyao Zhou . Photocatalyzed oxidation of water on oxygen pretreated rutile TiO2(110). Chinese Chemical Letters, 2025, 36(4): 110602-. doi: 10.1016/j.cclet.2024.110602

    6. [6]

      Linlu BaiWensen LiXiaoyu ChuHaochun YinYang QuEkaterina KozlovaZhao-Di YangLiqiang Jing . Effects of nanosized Au on the interface of zinc phthalocyanine/TiO2 for CO2 photoreduction. Chinese Chemical Letters, 2025, 36(2): 109931-. doi: 10.1016/j.cclet.2024.109931

    7. [7]

      Lihua HUANGJian HUA . Denitration performance of HoCeMn/TiO2 catalysts prepared by co-precipitation and impregnation methods. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 629-645. doi: 10.11862/CJIC.20230315

    8. [8]

      Hongye Bai Lihao Yu Jinfu Xu Xuliang Pang Yajie Bai Jianguo Cui Weiqiang Fan . Controllable Decoration of Ni-MOF on TiO2: Understanding the Role of Coordination State on Photoelectrochemical Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100096-100096. doi: 10.1016/j.cjsc.2023.100096

    9. [9]

      Wenhao WangGuangpu ZhangQiufeng WangFancang MengHongbin JiaWei JiangQingmin Ji . Hybrid nanoarchitectonics of TiO2/aramid nanofiber membranes with softness and durability for photocatalytic dye degradation. Chinese Chemical Letters, 2024, 35(7): 109193-. doi: 10.1016/j.cclet.2023.109193

    10. [10]

      Mengli Xu Zhenmin Xu Zhenfeng Bian . Achieving Ullmann coupling reaction via photothermal synergy with ultrafine Pd nanoclusters supported on mesoporous TiO2. Chinese Journal of Structural Chemistry, 2024, 43(7): 100305-100305. doi: 10.1016/j.cjsc.2024.100305

    11. [11]

      Fei ZHOUXiaolin JIA . Co3O4/TiO2 composite photocatalyst: Preparation and synergistic degradation performance of toluene. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2232-2240. doi: 10.11862/CJIC.20240236

    12. [12]

      Zhuoyan Lv Yangming Ding Leilei Kang Lin Li Xiao Yan Liu Aiqin Wang Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015

    13. [13]

      Jiatong LiLinlin ZhangPeng HuangChengjun Ge . Carbon bridge effects regulate TiO2–acrylate fluoroboron coatings for efficient marine antifouling. Chinese Chemical Letters, 2025, 36(2): 109970-. doi: 10.1016/j.cclet.2024.109970

    14. [14]

      Bo YANGGongxuan LÜJiantai MA . Corrosion inhibition of nickel-cobalt-phosphide in water by coating TiO2 layer. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 365-384. doi: 10.11862/CJIC.20240063

    15. [15]

      Xingang KongYabei SuCuijuan XingWeijie ChengJianfeng HuangLifeng ZhangHaibo OuyangQi Feng . Facile synthesis of porous TiO2/SnO2 nanocomposite as lithium ion battery anode with enhanced cycling stability via nanoconfinement effect. Chinese Chemical Letters, 2024, 35(11): 109428-. doi: 10.1016/j.cclet.2023.109428

    16. [16]

      Cailiang YueNan SunYixing QiuLinlin ZhuZhiling DuFuqiang Liu . A direct Z-scheme 0D α-Fe2O3/TiO2 heterojunction for enhanced photo-Fenton activity with low H2O2 consumption. Chinese Chemical Letters, 2024, 35(12): 109698-. doi: 10.1016/j.cclet.2024.109698

    17. [17]

      Yifen HeChao QuNa RenDawei Liang . Enhanced degradation of refractory organics in ORR-EO system with a blue TiO2 nanotube array modified Ti-based Ni-Sb co-doped SnO2 anode. Chinese Chemical Letters, 2024, 35(8): 109262-. doi: 10.1016/j.cclet.2023.109262

    18. [18]

      Maosen XuPengfei ZhuQinghong CaiMeichun BuChenghua ZhangHong WuYouzhou HeMin FuSiqi LiXingyan LiuIn-situ fabrication of TiO2/NH2−MIL-125(Ti) via MOF-driven strategy to promote efficient interfacial effects for enhancing photocatalytic NO removal activity. Chinese Chemical Letters, 2024, 35(10): 109524-. doi: 10.1016/j.cclet.2024.109524

    19. [19]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    20. [20]

      Xing Xiao Yunling Jia Wanyu Hong Yuqing He Yanjun Wang Lizhi Zhao Huiqin An Zhen Yin . Sulfur-defective ZnIn2S4 nanosheets decorated by TiO2 nanosheets with exposed {001} facets to accelerate charge transfer for efficient photocatalytic hydrogen evolution. Chinese Journal of Structural Chemistry, 2024, 43(12): 100474-100474. doi: 10.1016/j.cjsc.2024.100474

Metrics
  • PDF Downloads(2)
  • Abstract views(660)
  • HTML views(160)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return