Citation: HUANG Huodi, ZHANG Xiaofeng, ZHANG Yi, LE Lijuan, Lin Shen. Synthesis of Pt/{Reduced Graphene Oxide/Polyoxometalates}n Composite Films and Their Electrocatalytic Performance[J]. Chinese Journal of Applied Chemistry, ;2017, 34(10): 1209-1220. doi: 10.11944/j.issn.1000-0518.2017.10.160501 shu

Synthesis of Pt/{Reduced Graphene Oxide/Polyoxometalates}n Composite Films and Their Electrocatalytic Performance

  • Corresponding author: Lin Shen, shenlin@fjnu.edu.cn
  • Received Date: 9 December 2016
    Revised Date: 12 February 2017
    Accepted Date: 13 April 2017

    Fund Project: Natural Science Foundation of Fujian Province 2014J01033the National Natural Science Foundation of China 21571034Supported by the National Natural Science Foundation of China(No.21571034), Natural Science Foundation of Fujian Province(No.2014J01033)

Figures(13)

  • A series of {Reduced graphene oxide/Polyoxometalates}n({rGO/POMs }n) multilayer composite films was prepared by layer by layer assembly(LBL) combined with the light-assisted reduction in situ. The {rGO/POMs }n film was used as a carrier to support Pt nanoparticles electrodeposited by constant potential method to obtain a new type of fuel cell anode catalyst, namely Pt/{rGO/SiW12}6 multilayer composite film. The growth of the multilayer composite films and Pt nanoclusters' morphology were characterized by UV-visible absorption spectrum(UV-Vis), atomic force microscope(AFM) and scanning elecrton microscopy(SEM). The results indicate that the multilayer composite {rGO/SiW12}6 is assembled on different substrate(quartz plate, indium tin oxide(ITO), and glass carbon electrode(GC)) surfaces with a continuous and uniform state, and the Pt nanoparticles on the surface exhibit a flower-like morphology. The electrochemical experiments show that Pt/{rGO/SiW12}6 catalyst exhibits better electrocatalytic activity, electrochemical stability and superior resistance to CO poisoning in the acidic methanol solution when it is compared with Pt/{rGO/PMo12}6, Pt/{rGO/PW12}6 and Pt. The Pt/{rGO/SiW12}6 multilayer composite film is expected to be the most promising methanol oxidation reaction catalyst in fuel cell anode.
  • 加载中
    1. [1]

      Stoller M D, Park S, Zhu Y. Graphene-based Ultracapacitors[J]. Nano Lett, 2008,8(10):3498-3502. doi: 10.1021/nl802558y

    2. [2]

      Geim A K. Graphene:Status and Prospects[J]. Science, 2009,324(5934):1530-1534. doi: 10.1126/science.1158877

    3. [3]

      Geim A K, Novoselov K S. The Rise of Graphene[J]. Nat Mater, 2007,6(3):183-191. doi: 10.1038/nmat1849

    4. [4]

      Chen D, Tang L, Li J. Graphene-Based Materials in Electrochemistry[J]. Chem Soc Rev, 2010,39(8):3157-3180. doi: 10.1039/b923596e

    5. [5]

      Park S, Ruoff R S. Chemical Methods for the Production of Graphenes[J]. Nat Nanotechnol, 2009,4(4):217-224. doi: 10.1038/nnano.2009.58

    6. [6]

      Cote L J, Cruz-Silva R, Huang J. Flash Reduction and Patterning of Graphite Oxide and Its Polymer Composite[J]. J Am Chem Soc, 2009,131(31):11027-11032. doi: 10.1021/ja902348k

    7. [7]

      Manga K K, Zhou Y, Yan Y. Multilayer Hybrid Films Consisting of Alternating Graphene and Titania Nanosheets with Ultrafast Electron Transfer and Photoconversion Properties[J]. Adv Funct Mater, 2009,19(22):3638-3643. doi: 10.1002/adfm.v19:22

    8. [8]

      Li H, Pang S, Feng X. Polyoxometalate Assisted Photoreduction of Graphene Oxide and Its Nanocomposite Formation[J]. Chem Commun, 2010,46(34):6243-6245. doi: 10.1039/c0cc01098g

    9. [9]

      Gilje S, Han S, Wang M. A Chemical Route to Graphene for Device Applications[J]. Nano Lett, 2007,7(11):3394-3398. doi: 10.1021/nl0717715

    10. [10]

      Wang X, Zhi L, Müllen K. Transparent, Conductive Graphene Electrodes for Dye-Sensitized Solar Cells[J]. Nano Lett, 2008,8(1):323-327. doi: 10.1021/nl072838r

    11. [11]

      Liang Y, Frisch J, Zhi L. Transparent, Highly Conductive Graphene Electrodes from Acetylene-Assisted the Rmolysis of Graphite Oxide Sheets and Nanographene Molecules[J]. Nanotechnology, 2009,20(43)434007. doi: 10.1088/0957-4484/20/43/434007

    12. [12]

      Eda G, Fanchini G, Chhowalla M. Large-Area Ultrathin Films of Reduced Graphene Oxide as a Transparent and Flexible Electronic Material[J]. Nat Nanotechnol, 2008,3(5):270-274. doi: 10.1038/nnano.2008.83

    13. [13]

      Li D, Mueller M B, Gilje S. Processable Aqueous Dispersions of Graphene Nanosheets[J]. Nat Nanotechnol, 2008,3(2):101-105. doi: 10.1038/nnano.2007.451

    14. [14]

      WANG Tianlei, LIU Meitang, MA Hongwen. Recent Advances in Thin-Film Material Based on Layered Double Hydroxides via a Layer-by-Layer Self-Assembly Method[J]. Chem Ind Eng Prog, 2013,32(7):1584-1590.  

    15. [15]

      Sanyal O, Lee I. Recent Progress in the Applications of Layer-by-Layer Assembly to the Preparation of Nanostructured Lon-Jejecting Water Purification Membranes[J]. J Nanosci Nanotechnol, 2014,14(3):2178-2189. doi: 10.1166/jnn.2014.8541

    16. [16]

      Manga K K, Zhou Y, Yan Y. Multilayer Hybrid Films Consisting of Alternating Graphene and Titania Nanosheets with Ultrafast Electron Transfer and Photoconversion Properties[J]. Adv Funct Mater, 2009,19(22):3638-3643. doi: 10.1002/adfm.v19:22

    17. [17]

      Zhao X, Zhang Q, Hao Y. Alternate Multilayer Films of Poly(vinyl alcohol) and Exfoliated Graphene Oxide Fabricated via a Facial Layer-by-Layer Assembly[J]. Macromolecules, 2010,43(22):9411-9416. doi: 10.1021/ma101456y

    18. [18]

      Anwar N, Vagin M, Naseer R. Redox Switching of Polyoxometalate-Methylene Blue-Based Layer-by-Layer Films[J]. Langmuir, 2012,28(12):5480-5488. doi: 10.1021/la3004068

    19. [19]

      Wang B, Vyas R N, Shaik S. Preparation Parameter Development for Layer-by-Layer Assembly of Keggin-Type Polyoxometalates[J]. Langmuir, 2007,23(22):11120-11126. doi: 10.1021/la701789n

    20. [20]

      Gao L H, Wang K Z, Wang L Y. Preparation and Electrochemical and Electrocatalytic Properties of Nanocomposite Multilayer Film Based on a Keggin-type Phosphomolybdate[J]. J Nanosci Nanotechnol, 2011,11(11):9861-9864. doi: 10.1166/jnn.2011.5314

    21. [21]

      Fernandes D M, Carapuça H M, Brett C M A. Electrochemical Behaviour of Self-Assembly Multilayer Films Based on Iron-Substituted α-Keggin Polyoxotungstates[J]. Thin Solid Films, 2010,518(21):5881-5888. doi: 10.1016/j.tsf.2010.05.065

    22. [22]

      Zeng Q, Cheng J, Tang L. Self-Assembled Graphene-Enzyme Hierarchical Nanostructures for Electrochemical Biosensing[J]. Adv Funct Mater, 2010,20(19):3366-3372. doi: 10.1002/adfm.201000540

    23. [23]

      Shahriary L, Athawale A A. Graphene Oxide Synthesized by Using Modified Hummers Approach[J]. Int J Renew Energy Environ Eng, 2014,2:58-63.  

    24. [24]

      Zhu Y, Zhou Y, Yu L. A Highly Stable and Active Pd Catalyst on Monolithic Cordierite with Graphene Coating Assisted by PDDA[J]. RSC Adv, 2014,4(19):9480-9483. doi: 10.1039/c3ra46316h

    25. [25]

      You Y, Gao S, Xu B. Self-Assembly of Polyoxometalate-Azure a Multilayer Films and their Photocatalytic Properties for Degradation of Methyl Orange under Visible Light Irradiation[J]. J Colloid Interface Sci, 2010,350(2):562-567. doi: 10.1016/j.jcis.2010.07.001

    26. [26]

      Li H, Pang S, Wu S. Layer-by-Layer Assembly and UV Photoreduction of Graphene-Polyoxometalate Composite Films for Electronics[J]. J Am Chem Soc, 2011,133(24):9423-9429. doi: 10.1021/ja201594k

    27. [27]

      Ammam M, Keita B, Nadjo L. Nitrite Sensor Based on Multilayer Film of Dawson-Type Tungstophosphate α-K7[H4PW18O62]·18H2O Immobilized on Glassy Carbon[J]. Talanta, 2010,80(5):2132-2140. doi: 10.1016/j.talanta.2009.11.020

    28. [28]

      Sun Z, He J, Kumbhar A. Nonaqueous Synthesis and Photoluminescence of ITO Nanoparticles[J]. Langmuir, 2010,26(6):4246-4250. doi: 10.1021/la903316b

    29. [29]

      Liu R, Li S, Yu X. A General Green Strategy for Fabricating Metal Nanoparticles/Polyoxometalate/Graphene Tri-Component Nanohybrids:Enhanced Electrocatalytic Properties[J]. J Mater Chem, 2012,22(8):3319-3322. doi: 10.1039/c2jm15875b

    30. [30]

      Sun Y, Hu X, Luo W. Reconstruction of Conformal Nanoscale MnO on Graphene as a High-Capacity and Long-Life Anode Material for Lithium Ion Batteries[J]. Adv Funct Mater, 2013,23(19):2436-2444. doi: 10.1002/adfm.v23.19

    31. [31]

      Han D M, Guo Z P, Zeng R. Multiwalled Carbon Nanotube-Supported Pt/Sn and Pt/Sn/PMo12 Electrocatalysts for Methanol Electro-oxidation[J]. Int J Hydrogen Energ, 2009,34(5):2426-2434. doi: 10.1016/j.ijhydene.2008.12.073

    32. [32]

      Li Z, Li M, Han M. Preparation and Characterization of Carbon-Supported PtOs Electrocatalysts via Polyol Reduction Method for Methanol Oxidation Reaction[J]. J Power Sources, 2014,268:824-830. doi: 10.1016/j.jpowsour.2014.06.122

    33. [33]

      Gao M R, Lin Z Y, Jiang J. Completely Green Synthesis of Colloid Adams' Catalyst α-PtO2 Nanocrystals and Derivative Pt Nanocrystals with High Activity and Stability for Oxygen Reduction[J]. Chem-Eur J, 2012,18(27):8423-8429. doi: 10.1002/chem.v18.27

    34. [34]

      Xin Y, Liu J, Zhou Y. Preparation and Characterization of Pt Supported on Graphene with Enhanced Electrocatalytic Activity in Fuel Cell[J]. J Power Sources, 2011,196(3):1012-1018. doi: 10.1016/j.jpowsour.2010.08.051

    35. [35]

      Guo S, Dong S, Wang E. Three-Dimensional Pt-on-Pd Bimetallic Nanodendrites Supported on Graphene Nanosheet:Facile Synthesis and Used as an Advanced Nanoelectrocatalyst for Methanol Oxidation[J]. ACS Nano, 2009,4(1):547-555.

    36. [36]

      Wen Z, Wang Q, Zhang Q. Hollow Carbon Spheres with Wide Size Distribution as Anode Catalyst Support for Direct Methanol Fuel Cells[J]. Electrochem Commun, 2007,9(8):1867-1872. doi: 10.1016/j.elecom.2007.04.016

    37. [37]

      Guo X, Guo D J, Wang J S. Using Phosphomolybdic Acid(H3PMo12O40) to Efficiently Enhance the Electrocatalytic Activity and CO-Tolerance of Platinum Nanoparticles Supported on Multi-Walled Carbon Nanotubes Catalyst in Acidic Medium[J]. J Electroanal Chem, 2010,638(1):167-172. doi: 10.1016/j.jelechem.2009.09.001

  • 加载中
    1. [1]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    2. [2]

      Xinyu Miao Hao Yang Jie He Jing Wang Zhiliang Jin . 调整Keggin型多金属氧酸盐电子结构构建S型异质结用于光催化析氢. Acta Physico-Chimica Sinica, 2025, 41(6): 100051-. doi: 10.1016/j.actphy.2025.100051

    3. [3]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    4. [4]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    5. [5]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    6. [6]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    7. [7]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    8. [8]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    9. [9]

      Zhengzheng LIUPengyun ZHANGChengri WANGShengli HUANGGuoyu YANG . Synthesis, structure, and electrochemical properties of a sandwich-type {Co6}-cluster-added germanotungstate. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1173-1179. doi: 10.11862/CJIC.20240039

    10. [10]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    11. [11]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    12. [12]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    13. [13]

      Tian TIANMeng ZHOUJiale WEIYize LIUYifan MOYuhan YEWenzhi JIABin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 385-394. doi: 10.11862/CJIC.20240298

    14. [14]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    15. [15]

      Xueting Cao Shuangshuang Cha Ming Gong . 电催化反应中的界面双电层:理论、表征与应用. Acta Physico-Chimica Sinica, 2025, 41(5): 100041-. doi: 10.1016/j.actphy.2024.100041

    16. [16]

      Shiyang He Dandan Chu Zhixin Pang Yuhang Du Jiayi Wang Yuhong Chen Yumeng Su Jianhua Qin Xiangrong Pan Zhan Zhou Jingguo Li Lufang Ma Chaoliang Tan . 铂单原子功能化的二维Al-TCPP金属-有机框架纳米片用于增强光动力抗菌治疗. Acta Physico-Chimica Sinica, 2025, 41(5): 100046-. doi: 10.1016/j.actphy.2025.100046

    17. [17]

      Fengqiao Bi Jun Wang Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069

    18. [18]

      Zhenlin Zhou Siyuan Chen Yi Liu Chengguo Hu Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049

    19. [19]

      Tianqi Bai Kun Huang Fachen Liu Ruochen Shi Wencai Ren Songfeng Pei Peng Gao Zhongfan Liu . 石墨烯厚膜热扩散系数与微观结构的关系. Acta Physico-Chimica Sinica, 2025, 41(3): 2404024-. doi: 10.3866/PKU.WHXB202404024

    20. [20]

      Jiahao Lu Xin Ming Yingjun Liu Yuanyuan Hao Peijuan Zhang Songhan Shi Yi Mao Yue Yu Shengying Cai Zhen Xu Chao Gao . 基于稳态电热法的石墨烯膜导热系数的精确可靠测量. Acta Physico-Chimica Sinica, 2025, 41(5): 100045-. doi: 10.1016/j.actphy.2025.100045

Metrics
  • PDF Downloads(5)
  • Abstract views(2901)
  • HTML views(1850)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return