Citation: WANG Yutong, FAN Weidong, XIAO Zhenyu, HUANG Zhaodi, XU Lin, ZHANH Liangliang, XING Lixue, DAI Fangna, SUN Daofeng. Solvent-Dependent Synthesis and Fluorescent Properties of Cu(Ⅱ) Metal-Organic Frameworks[J]. Chinese Journal of Applied Chemistry, ;2017, 34(9): 1035-1045. doi: 10.11944/j.issn.1000-0518.2017.09.170180 shu

Solvent-Dependent Synthesis and Fluorescent Properties of Cu(Ⅱ) Metal-Organic Frameworks

  • Corresponding author: DAI Fangna, fndai@upc.edu.cn SUN Daofeng, dfsun@upc.edu.cn
  • Received Date: 26 May 2017
    Revised Date: 23 June 2017
    Accepted Date: 23 June 2017

    Fund Project: the National Natural Science Foundation of China 21571187Supported by the National Natural Science Foundation of China(No.21571187)

Figures(8)

  • Metal-organic frameworks have promising potentials of for applications in the areas of fluorescence recognition. To explore more accurate identification of synthetic substancess, we synthesized two copper metal-organic frameworks(MOFs), {[Cu(PAIA)(H2O)]·2H2O}(1) and {[Cu3(PAIA)2(DMSO)(Pyridine)1.5]}(2)(H2PAIA=5-(propionyl-λ2-azanyl)isophthalic acid; DMSO=dimethyl sulphoxide), by the solvothermal reaction in the presence of H2PAIA under different solvents(H2O and DMSO/H2O). Synthetic investigations and structural analyses reveal that both MOFs show distinct frameworks with remarkable solvent-directed feature, although they are assembled from the same starting materials, i.e., Cu(NO3)2·3H2O with H2PAIA for complexes 1 and 2. The topological structures and fluorescent properties of the two coordination compounds show a significant difference. Complex 1 is a three-dimensional NbO-type topology, while the complex 2 is a two-dimensional sql-type topology. Complex 1 exhibits fluorescent recognition to both Pb2+ and Ag+ ions, while complex 2 exhibits fluorescent recognition of Pb2+ ion. The water contact angle for complex 1 is 85.06°, while the water contact angle for complex 2 is 52.71°.
  • 加载中
    1. [1]

      Liu W S, Jiao T Q, Li Y Z. Lanthanide Coordination Polymers and Their Ag+-Modulated Fluorescence[J]. J Am Chem Soc, 2004,126(8):2280-2281. doi: 10.1021/ja036635q

    2. [2]

      Takashima Y, Martínez V M, Furukawa S. Molecular Decoding Using Luminescence from an Entangled Porous Framework[J]. Nat Commun, 2011,2(168):1-8.  

    3. [3]

      Wanderley M M, Wang C, Wu C D. A Chiral Porous Metal-Organic Framework for Highly Sensitive and Enantioselective Fluorescence Sensing of Amino Alcohols[J]. J Am Chem Soc, 2012,134(22):9050-9053. doi: 10.1021/ja302110d

    4. [4]

      Wang J H, Li M, Li D. A Dynamic, Luminescent and Entangled MOF as a Qualitative Sensor for Volatile Organic Solvents and a Quantitative Monitor for Acetonitrile Vapour[J]. Chem Sci, 2013,4(4):1793-1801. doi: 10.1039/c3sc00016h

    5. [5]

      Meng Q G, Xin X L, Zhang L L. A Multifunctional Eu MOF as a Fluorescent pH Sensor and Exhibiting Highly Solvent-Dependent Adsorption and Degradation of Rhodamine B[J]. J Mater Chem A, 2015,3(47):24016-24021. doi: 10.1039/C5TA04989J

    6. [6]

      Furukawa H, Cordova K E, O'Keeffe M. The Chemistry and Applications of Metal-Organic Frameworks[J]. Science, 2013,44(45)1230444.  

    7. [7]

      Eddaoudi M, Kim J, Rosi N. Systematic Design of Pore Size and Functionality in Isoreticular MOFs and Their Application in Methane Storage[J]. Science, 2002,295(5554):469-72. doi: 10.1126/science.1067208

    8. [8]

      Yang J, Wang X Q, Wang R M. Syntheses, Crystal Structures, and Properties of Two 2-FoldInterpenetrating Metal-Organic Frameworks Based on a Trigonal Rigid Ligand[J]. Cryst Growth Des, 2014,14(12):6521-6527. doi: 10.1021/cg501425x

    9. [9]

      Zhao B, Chen X Y, Cheng P. Coordination Polymers Containing 1D Channels as Selective Luminescent Probes[J]. J Am Chem Soc, 2004,126(47):15394-15395. doi: 10.1021/ja047141b

    10. [10]

      Zhang M H, Xin X L, Xiao Z Y. A Multi-Aromatic Hydrocarbon Unit Induced Hydrophobic Metal Organic Framework for Efficient C2/C1 Hydrocarbon and Oil/Water Separation[J]. J Mater Chem A, 2017,5(3):1168-1175. doi: 10.1039/C6TA08368D

    11. [11]

      Xiao B, Wheatley P S, Zhao X B. High-Capacity Hydrogen and Nitric Oxide Adsorption and Storage in a Metal-Organic Framework[J]. J Am Chem Soc, 2007,129(5):1203-1209. doi: 10.1021/ja066098k

    12. [12]

      Rowsell J L C, Yaghi O M. Angew Strategies for Hydrogen Storage in Metal-Organic Framework[J]. Chem Int Ed, 2005,44(30):4670-4679. doi: 10.1002/(ISSN)1521-3773

    13. [13]

      Lan Y Q, Jiang H L, Li S L. Mesoporous Metal-Organic Frameworks with Size-tunable Cages:Selective CO2 Uptake, Encapsulation of Ln3+ Cations for Luminescence, and Column-Chromatographic Dye Separation[J]. Adv Mater, 2011,23(43):5015-5020. doi: 10.1002/adma.201102880

    14. [14]

      Lu X M, Li P Z, Wang X T. pH-Directed Assembly and Magnetic Properties of Two Polynuclear Mn Complexes:(△, Λ)-{Mn3(phen)2(OOCCH3)6} and 1-D[J]. Polyhedron, 2008,27(18):3669-3673. doi: 10.1016/j.poly.2008.08.027

    15. [15]

      Tzeng B C, Yeh H T, Chang T Y. Novel Coordinated-Solvent Induced Assembly of Cd(Ⅱ) Coordination Polymers Containing 4, 4'-Dipyridylsulfide[J]. Cryst Growth Des, 2009,9(6):2552-2555. doi: 10.1021/cg900119a

    16. [16]

      Zou R Q, Amr I A F, Xu H W. Porous Metal-Organic Frameworks Containing Alkali-Bridged Two-Fold Interpenetration:Synthesis, Gas Adsorption, and Fluorescence Properties[J]. Cryst Growth Des, 2010,10(3):1301-1306. doi: 10.1021/cg901347p

    17. [17]

      Li C P, Du M. Role of Solvents in Coordination Supramolecular Systems[J]. Chem Commun, 2011,47(21):5958-5972. doi: 10.1039/c1cc10935a

    18. [18]

      Yin P X, Zhang J, Qin Y Y. Role of Molar-Ratio, Temperature and Solvent on the Zn/Cd 1, 2, 4-Triazolate System with Novel Topological Architectures[J]. CrystEngComm, 2011,13(10):3536-3544. doi: 10.1039/c0ce00762e

    19. [19]

      Beck J S, Vartuli J C, Kennedy G J. Molecular or Supramolecular Templating:Defining the Role of Surfactant Chemistry in the Formation of Microporous and Mesoporous Molecular Sieves[J]. Chem Mater, 1994,6(10):1816-1821. doi: 10.1021/cm00046a040

    20. [20]

      Egeblad K, Christensen C H, Kustova M. Templating Mesoporous Zeolites[J]. Chem Mater, 2008,20(3):946-960. doi: 10.1021/cm702224p

    21. [21]

      Yang X Y, Léonard A, Lemaire A. Self-formation Phenomenon to Hierarchically Structured Porous Materials:Design, Synthesis, Formation Mechanism and Applications[J]. Chem Commun, 2011,47(10):2763-2786. doi: 10.1039/c0cc03734f

    22. [22]

      Li P Z, Wang X J, Li Y X. Co(Ⅱ)-Tricarboxylate Metal-Organic Frameworks Constructed from Solvent-Directed Assembly for CO2 Adsorption[J]. Micropor Mesopor Mater, 2013,176(10):194-198.

  • 加载中
    1. [1]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    2. [2]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    3. [3]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    4. [4]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    5. [5]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    6. [6]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    7. [7]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    8. [8]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    9. [9]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    10. [10]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    11. [11]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    12. [12]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    13. [13]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    14. [14]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    15. [15]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    16. [16]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    17. [17]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    18. [18]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    19. [19]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    20. [20]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

Metrics
  • PDF Downloads(25)
  • Abstract views(1980)
  • HTML views(373)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return