Citation: LI Yuhe, HU Hailong. Hydrothermal Synthesis of an Approximate Two-Dimensional Hexgonal Nickel Nanoplatelets[J]. Chinese Journal of Applied Chemistry, ;2017, 34(8): 918-927. doi: 10.11944/j.issn.1000-0518.2017.08.160464 shu

Hydrothermal Synthesis of an Approximate Two-Dimensional Hexgonal Nickel Nanoplatelets

  • Corresponding author: HU Hailong, hlhu@swust.edu.cn
  • Received Date: 17 November 2016
    Revised Date: 23 February 2017
    Accepted Date: 6 April 2017

    Fund Project: National Innovation and Entreprenership Training Program for Undergraduate No.201510619024Supported by National Innovation and Entreprenership Training Program for Undergraduate(No.201510619024)

Figures(7)

  • 2D platelet like nickel nanomaterials have high anisotropy with the morphology, and have the significant application on the catalysis, magnetic recording, energy source and biological detection field. It is important to search a simple, low cost method to prepare platelet like nickel nanomaterials without any surfactant. Without any organic surfactant and other morphology control agent, thin nickel nanoplatelets were successfully prepared on the fluorine-doped tin oxide(FTO) under the hydrothermal condition. The influence of synthetic conditions on the morphology of the nanoplatelets was investigated. It is found that the concentration of nickel salt, sodium hydroxide, and ammonia and the reaction temperature have apparent influences on the morphology of the nickel nanoplatelets. The ideal nickel nanoplatelets with large lateral size and small thickness can be obtained only under optimal concentrations of both sodium hydroxide and ammonia together. Approximate two-dimensional(2D) hexgonal thin nickel nanoplatlets with a characteristic thickness of about 10 nm and the lateral feature width of about 1 μm were obtained under optimal synthetic conditions. The pH value and the reaction temperature affect the reaction speed, and finally the morphology of the nanoplatelets. At pH 10, the complexation of ammonia to the nickel ion can facilitate the 2D growth of nickel nanoplatelets.
  • 加载中
    1. [1]

      Valiev R Z. Structure and Mechanical Properties of Ultrafine-Grained Metals[J]. Mater Sci Eng A, 1997(234/235/236):59-66.

    2. [2]

      Gangopadhyay S, Hadjipanayis G C, Dale B. Magnetic Properties of Ultrafine Iron Particles[J]. Phys Rev, 1992,45(17):9778-9783. doi: 10.1103/PhysRevB.45.9778

    3. [3]

      Wang Z K, Kuok M H, Ng S C. Spin-Wave Quantization in Ferromagnetic Nickel Nanowires[J]. Phys Rev Lett, 2002,89(2)027201. doi: 10.1103/PhysRevLett.89.027201

    4. [4]

      Fendler J H. Atomic and Molecular Clusters in Membrane Mimetic Chemistry[J]. Chem Rev, 1987,87(5):877-899. doi: 10.1021/cr00081a002

    5. [5]

      Schmid G. Large Clusters and Colloids, Metals in the Embryonic State[J]. Chem Rev, 1992,92(8):1709-1727. doi: 10.1021/cr00016a002

    6. [6]

      Beecroft L L, Ober C K. Nanocomposite Materials for Optical Applications[J]. Chem Mater, 1997,9(6):1302-1317. doi: 10.1021/cm960441a

    7. [7]

      Shmid G, Chi L F. Metal Clusters and Colloids[J]. Adv Mater, 1998,10(7):515-527. doi: 10.1002/(ISSN)1521-4095

    8. [8]

      Shevchenko E V, Talapin D V, Schnablegger H. Study of Nucleation and Growth in the Organometallic Synthesis of Magnetic Alloy Nanocrystals:The Role of Nucleation Rate in Size Control of CoPt3 Nanocrystals[J]. J Am Chem Soc, 2003,125(30):9090-9101. doi: 10.1021/ja029937l

    9. [9]

      XU Xiaobing, LIU Xiansong, Meridor U. Ni Nanoparticles Synthesized by Microwave-assisted Polyol Method[J]. J Magn Mater Dev, 2008,39(6):33-35.  

    10. [10]

      Chatterjee A, Chakravorty D. Preparation of Nickel Nanoparticles by Metal Organic Route[J]. Appl Phys Lett, 1992,60(1):138-140. doi: 10.1063/1.107350

    11. [11]

      Chu S Z, Wada K, Inoue S. Fabrication and Characteristics of Ordered Ni Nanostructures on Glass by Anodization and Direct Current Electrodeposition[J]. Chem Mater, 2002,14(11):4595-4602. doi: 10.1021/cm020272w

    12. [12]

      Park J, Kang E, Son S U. Monodisperse Nanoparticles of Ni and NiO:Synthesis, Characterization, Self-assembled Superlattices, and Catalytic Applications in the Suzuki Coupling Reaction[J]. Adv Mater, 2005,17(4):429-434. doi: 10.1002/(ISSN)1521-4095

    13. [13]

      Cordente N, Respaud M, Senocq F. Synthesis and Magnetic Properties of Nickel Nanorods[J]. Nano Lett, 2001,1(10):565-568. doi: 10.1021/nl0100522

    14. [14]

      Tani E, Yoshimura M, Somiya S. Hydrothermal Preparation of Ultrafine Monoclinic ZrO2 Powder[J]. J Am Ceram Soc, 1981,64(12)181.

    15. [15]

      Zhang D E, Ni X M, Li Y. Synthesis of Needle-Like Nickel Nanoparticles in Water-in-Oil Microemulsion[J]. Mater Lett, 2005,59(7):2011-2014.

    16. [16]

      Chang Z Q, Liu G, Zhang Z C. In Situ Coating of Micro Reactor Inner Wall with Nickel Nano-Particles Prepared by γ-Irradiation in Magnetic Field[J]. Radiat Phys Chem, 2004,69(8):445-449.

    17. [17]

      JIN Chuangui, TAN Jie. Preparation of Nickle Nanoparticles by Chemical Reduction Method[J]. J Anhui Univ Technol, 2007,24(1):36-38.  

    18. [18]

      ZHAN Jing, YUE Jianfeng, ZHANG Chuanfu. Study on Preparation and Mechanism of Reduction and Growth of Ultrafine Nickel Powders[J]. J Mater Eng, 2011,7(1):10-15.  

    19. [19]

      CHEN Zhe, CHEN Feng, XU Na. One-step Fabrication of Nickel Hierarchical Superstructures[J]. J Jilin Inst Chem Technol, 2012,29(9):46-50.  

    20. [20]

      YADIAN Boluo, LIU Ping, WEI Liangming. Magnetic-field-induced Template-free Fabrication of Nickel Nanowires[J]. J Zhengzhou Univ(Nat Sci Ed), 2009,41(2):77-81.  

    21. [21]

      MI Yuanzhu, YAN Xuemin. Preparation of Polygon Flake-shaped Nickel Powder via Solvothermal Route[J]. J Magn Mater Dev, 2010,41(3):22-25.  

    22. [22]

      Kuang Y, Feng G, Li P S. Single-Crystalline Ultrathin Nickel Nanosheets Array from In Situ Topotactic Reduction for Active and Stable Electrocatalysis[J]. Angew Chem Int Ed, 2016,55(2):693-697. doi: 10.1002/anie.201509616

    23. [23]

      WANG Liying, CAI Lingjian, SHEN Di. Reducing Agents and Capping Agents in the Preparation of Metal Nanoparticles[J]. Prog Chem, 2010,22(4):580-592.  

    24. [24]

      QI Hongyan, QI Yajun, LU Chaojing. Synthesis and Microstructure of β-Ni(OH)2 and NiO Single-crystal Nanostructures[J]. J Chinese Electron Microsc Soc, 2007,26(3):179-183.  

    25. [25]

      Michael R, Kamath P V. On the Relationship Between α-Nickel Hydroxide and the Basic Salts of Nickel[J]. J Power Sources, 1998,70(1):118-121. doi: 10.1016/S0378-7753(97)02656-6

    26. [26]

      Sampanthar J T, Zeng H C. Arresting Butterfly-like Intermediate Nanocrystals of β-Co(OH)2 via Ethylenediamine-mediated Synthesis[J]. J Am Chem Soc, 2002,124:6668-6675. doi: 10.1021/ja012595j

    27. [27]

      FU Xiaoming, LIU Zhaowen. Hydrothermal Synthesis and Characterization of β-Ni(OH)2 Petal-shaped Sphere and Nanoplate[J]. Rare Met Cement Carb, 2012,40(2):29-32.  

    28. [28]

      PENG Meixun, WANG Lingsen, SHEN Xiangqian. Microstructures and Formation Mechanism of Spherical β-Ni(OH)[J]. Chinese J Nonferrous Met, 2003,13(5):1130-1135.  

    29. [29]

      PENG Meixun. Formation Mechanism of the Microstructures and the Electrochemical Performance for Spherical Nickel Hydroxide[D]. Changsha:Powder Mtallurgy Institute of Central South University, 2004(in Chinese).

    30. [30]

      Acharya R, Subbaiah T, Anand S. Effect of Preparation Parameters on Electrolytic Behaviour of Turbostratic Nickel Hydroxide[J]. Mater Chem Phys, 2003,81(1):45-49. doi: 10.1016/S0254-0584(03)00091-9

    31. [31]

      Acharya R, Subbaiah T, Anand S. Effect of Precipitating Agents on the Physicochemical and Electrolytic Characteristics of Nickel Hydroxide[J]. Mater Lett, 2003,57(20):3089-3095. doi: 10.1016/S0167-577X(03)00002-8

    32. [32]

      Yuan C Z, Zhang X G, Su L H. Facile Synthesis and Self-assembly of Hierarchical Porous NiO Nano/Micro Spherical Superstructures for High Performance Supercapacitors[J]. J Mater Chem, 2009,19(32):5772-5777. doi: 10.1039/b902221j

    33. [33]

      Guo C, Tang Y H, Zhang E L. Aggregation of Self-assembled Ni(OH)2 Nanosheets under Hydrothermal Conditions[J]. J Mater Sci, 2009,20(11):1118-1122.

    34. [34]

      LI Qunyan, LOU Zailiang, WANG Runa. Influence of Solution pH Value on Synthesis of Flower-Like Ni(OH)2 Microsphere[J]. Rare Met Mater Eng, 2009,38(S1):316-320.  

  • 加载中
    1. [1]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    2. [2]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    3. [3]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    4. [4]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    5. [5]

      Huanhuan XIEYingnan SONGLei LI . Two-dimensional single-layer BiOI nanosheets: Lattice thermal conductivity and phonon transport mechanism. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 702-708. doi: 10.11862/CJIC.20240281

    6. [6]

      Pengyu Dong Yue Jiang Zhengchi Yang Licheng Liu Gu Li Xinyang Wen Zhen Wang Xinbo Shi Guofu Zhou Jun-Ming Liu Jinwei Gao . NbSe2纳米片优化钙钛矿太阳能电池的埋底界面. Acta Physico-Chimica Sinica, 2025, 41(3): 2407025-. doi: 10.3866/PKU.WHXB202407025

    7. [7]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    8. [8]

      Shiyang He Dandan Chu Zhixin Pang Yuhang Du Jiayi Wang Yuhong Chen Yumeng Su Jianhua Qin Xiangrong Pan Zhan Zhou Jingguo Li Lufang Ma Chaoliang Tan . 铂单原子功能化的二维Al-TCPP金属-有机框架纳米片用于增强光动力抗菌治疗. Acta Physico-Chimica Sinica, 2025, 41(5): 100046-. doi: 10.1016/j.actphy.2025.100046

    9. [9]

      Qin Li Huihui Zhang Huajun Gu Yuanyuan Cui Ruihua Gao Wei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 100031-. doi: 10.3866/PKU.WHXB202402016

    10. [10]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    11. [11]

      Mengfei He Chao Chen Yue Tang Si Meng Zunfa Wang Liyu Wang Jiabao Xing Xinyu Zhang Jiahui Huang Jiangbo Lu Hongmei Jing Xiangyu Liu Hua Xu . Epitaxial Growth of Nonlayered 2D MnTe Nanosheets with Thickness-Tunable Conduction for p-Type Field Effect Transistor and Superior Contact Electrode. Acta Physico-Chimica Sinica, 2025, 41(2): 100016-. doi: 10.3866/PKU.WHXB202310029

    12. [12]

      Yuena Yang Xufang Hu Yushan Liu Yaya Kuang Jian Ling Qiue Cao Chuanhua Zhou . The Realm of Smart Hydrogels. University Chemistry, 2024, 39(5): 172-183. doi: 10.3866/PKU.DXHX202310125

    13. [13]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    14. [14]

      Yang Lv Yingping Jia Yanhua Li Hexiang Zhong Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, 2024, 39(11): 44-51. doi: 10.12461/PKU.DXHX202402059

    15. [15]

      Lisen Sun Yongmei Hao Zhen Huang Yongmei Liu . Experimental Teaching Design for Viscosity Measurement Serves the Optimization of Operating Conditions for Kitchen Waste Treatment Equipment. University Chemistry, 2024, 39(2): 52-56. doi: 10.3866/PKU.DXHX202307063

    16. [16]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    17. [17]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    18. [18]

      Keweiyang Zhang Zihan Fan Liyuan Xiao Haitao Long Jing Jing . Unveiling Crystal Field Theory: Preparation, Characterization, and Performance Assessment of Nickel Macrocyclic Complexes. University Chemistry, 2024, 39(5): 163-171. doi: 10.3866/PKU.DXHX202310084

    19. [19]

      Bo YANGGongxuan LÜJiantai MA . Corrosion inhibition of nickel-cobalt-phosphide in water by coating TiO2 layer. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 365-384. doi: 10.11862/CJIC.20240063

    20. [20]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

Metrics
  • PDF Downloads(3)
  • Abstract views(988)
  • HTML views(181)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return