Citation: LICHEN Haoyang, CUI Xihua, JIANG Wei, CHEN Bin. Preparation and Properties of the Poly(propylene carbonate)/Straw Flour Composites Compatibilized with Chlorided Poly(propylene carbonate)[J]. Chinese Journal of Applied Chemistry, ;2017, 34(7): 744-748. doi: 10.11944/j.issn.1000-0518.2017.07.160418 shu

Preparation and Properties of the Poly(propylene carbonate)/Straw Flour Composites Compatibilized with Chlorided Poly(propylene carbonate)

  • Corresponding author: CHEN Bin, bchen63@163.com
  • Received Date: 18 October 2016
    Revised Date: 4 November 2016
    Accepted Date: 29 December 2017

    Fund Project: the National Natural Science Foundation of China 51673195

Figures(4)

  • Poly(propylene carbonate)(PPC) is a new thermoplastic biodegradable material. However, its poor thermal and mechanical properties prevent its application in many fields. In corporation the straw flour, a by-product of agricultural products, into PPC is expected to enhance the mechanical properties of PPC and at the same time to find a way to make comprehensive use of straw resources. Chlorided poly(propylene carbonate)(CPPC), which was prepared by chlorination of PPC, possesses good wetting and adhering abilities on the surface of nature fibers. In this study, the PPC/straw flour composites compatibilized with CPPC were prepared by melt blending. The composites are characterized by scanning electron microscopy(SEM), tensile test, dynamic mechanical analysis(DMA) and rotational rheometer, focusing on the effect of CPPC contents on the mechanical and rheological properties of the composites. The results indicate that the tensile strength is increased by 38% for the 70/30 mass ratio of PPC to straw flour composites when 1.8%(mass fraction) CPPC is added. Moreover, the viscosity of the composite decreases with the introduction of CPPC and the processing property is improved accordingly. As a consequence, CPPC as compatibilizer provides a new way to prepare high performance PPC/natural fiber composites.
  • 加载中
    1. [1]

      Hu L, Li Z, Wu Z. Catalytic Hydrolysis of Microcrystalline and Rice Straw-Derived Cellulose over a Chlorine-Doped Magnetic Carbonaceous Solid Acid[J]. Ind Crops Prod, 2016,84:408-417. doi: 10.1016/j.indcrop.2016.02.039

    2. [2]

      Inoue S, Koinuma H, Tsuruta T. Copolymerization of Carbon Dioxide and Epoxide with Organometallic Compounds[J]. Macromol Chem, 1969,130(2):210-220.  

    3. [3]

      LIAO Bing, LIN Guo, HUANG Yuhui. Studies on the Blends of Poly(propylene carbonate) and Ethylene-Propylene-Dienmischpolymere Rubber[J]. Polym Mater Sci Eng, 1998,39(2):88-91.  

    4. [4]

      YE Xiaoguang, PANG Jie, HUANG Yuhui. Study on PPC/SBR Blend Part 2.Influence of Mixing Procedure on Blend Properties[J]. Chinese Rubber Ind, 1998,45(11):643-646.  

    5. [5]

      WANG Jianzhao, HUANG Yuhui, CONG Guangmin. Study on Novel Toughened Epoxy Resin by Polypropylene Carbonate[J]. J Funct Polym, 1994,7(2):181-185.  

    6. [6]

      Wang D X, Yu J, Zhang J M. Transparent Bionanocomposites with Improved Properties from Poly(propylene carbonate)(PPC) and Cellulose Nanowhiskers(CNWs)[J]. Compos Sci Technol, 2013,85(21):83-89.  

    7. [7]

      Chen W F, Pang M Z, Xiao M. Mechanical, Thermal, and Morphological Properties of Glass Fiber-reinforced Biodegradable Poly(propylene carbonate) Composites[J]. J Reinf Plast Compos, 2010,29(10):1545-1550. doi: 10.1177/0731684409336370

    8. [8]

      Li X H, Meng Y Z, Wang S J. Completely Biodegradable Composites of Poly(propylene carbonate) and Short, Lignocellulose Fiber Hildegardiapopulifolia[J]. J Poly Sci Part B Polym Phys, 2004,42(4):666-675. doi: 10.1002/(ISSN)1099-0488

    9. [9]

      Xu J, Li R K Y, Meng Y Z. Biodegradable Poly(propylene carbonate)/Montmorillonite Nanocomposites Prepared by Direct Melt Intercalation[J]. Mater Res Bull, 2006,41(2):244-252. doi: 10.1016/j.materresbull.2005.08.019

    10. [10]

      Ge X C, Zhu Q, Meng Y Z. Fabrication and Characterization of Biodegradable Poly(propylene carbonate)/Wood Flour Composites[J]. J Appl Polym Sci, 2006,99(3):782-787. doi: 10.1002/(ISSN)1097-4628

    11. [11]

      JIANG Wei. Preparation Method of Chloride PPC:CN, 103881078 B[P], 2016-02-03(in Chinese).

    12. [12]

      XIE Dong, ZHANG Chaocan, WANG Xianhong. End-Capping and Thermal Degradation of Poly(propylene carbonate) with Different Molecular Weight[J]. J Wuhan Univ Technol, 2007,29(8):5-9.  

  • 加载中
    1. [1]

      Yihan XueXue HanJie ZhangXiaoru Wen . NCQDs修饰FeOOH基复合材料的制备及其电容脱盐性能. Acta Physico-Chimica Sinica, 2025, 41(7): 100072-0. doi: 10.1016/j.actphy.2025.100072

    2. [2]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    3. [3]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    4. [4]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    5. [5]

      Feng Zheng Ruxun Yuan Xiaogang Wang . “Research-Oriented” Comprehensive Experimental Design in Polymer Chemistry: the Case of Polyimide Aerogels. University Chemistry, 2024, 39(10): 210-218. doi: 10.12461/PKU.DXHX202404027

    6. [6]

      Yuting BaiCenqi YanZhen LiJiaqiang QinPei Cheng . Preparation of High-Strength Polyimide Porous Films with Thermally Closed Pore Property by In Situ Pore Formation Method. Acta Physico-Chimica Sinica, 2024, 40(9): 2306010-0. doi: 10.3866/PKU.WHXB202306010

    7. [7]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    8. [8]

      Jiatong Hu Qiyi Wang Ruiwen Tang Jiajing Feng . Photocatalytic Journey of Perylene Diimides in a Competitive Arena. University Chemistry, 2025, 40(5): 328-333. doi: 10.12461/PKU.DXHX202407015

    9. [9]

      Yijing GUHuan PANGRongmei ZHU . Applications of nickel-based metal-organic framework compounds in supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2029-2038. doi: 10.11862/CJIC.20250186

    10. [10]

      Yajin LiHuimin LiuLan MaJiaxiong LiuDehua He . Photothermal Synthesis of Glycerol Carbonate via Glycerol Carbonylation with CO2 over Au/Co3O4-ZnO Catalyst. Acta Physico-Chimica Sinica, 2024, 40(9): 2308005-0. doi: 10.3866/PKU.WHXB202308005

    11. [11]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

    12. [12]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    13. [13]

      Fangfang WANGJiaqi CHENWeiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350

    14. [14]

      Xue XiaoJiachun LiXiangtong MengJieshan Qiu . Sulfur-Doped Carbon-Coated Fe0.95S1.05 Nanospheres as Anodes for High-Performance Sodium Storage. Acta Physico-Chimica Sinica, 2024, 40(6): 2307006-0. doi: 10.3866/PKU.WHXB202307006

    15. [15]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    16. [16]

      Min LIXianfeng MENG . Preparation and microwave absorption properties of ZIF-67 derived Co@C/MoS2 nanocomposites. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1932-1942. doi: 10.11862/CJIC.20240065

    17. [17]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    18. [18]

      Meng Lin Hanrui Chen Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 163-168. doi: 10.3866/PKU.DXHX202308117

    19. [19]

      Yu PengJiawei ChenYue YinYongjie CaoMochou LiaoCongxiao WangXiaoli DongYongyao Xia . Tailored cathode electrolyte interphase via ethylene carbonate-free electrolytes enabling stable and wide-temperature operation of high-voltage LiCoO2. Acta Physico-Chimica Sinica, 2025, 41(8): 100087-0. doi: 10.1016/j.actphy.2025.100087

    20. [20]

      Zhangyong LIULihui XUYue YANGLiming WANGHong PANXinzhe HUANGXueqiang FUYingxiu ZHANGMeiran DOUMeng WANGYi TENG . Preparation and photocatalytic performance of CsxWO3/TiO2 based on full spectral response. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1445-1464. doi: 10.11862/CJIC.20240345

Metrics
  • PDF Downloads(1)
  • Abstract views(721)
  • HTML views(66)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return