Citation: XIE Ruyi, ZHANG Linping, XU Hong, ZHONG Yi, SUI Xiaofeng, MAO Zhiping. Preparation of Bi20TiO32/Polyacrylonitrile Composite Nanofibers and Their Photocatalytic Activity for Degradation of Isoproturon[J]. Chinese Journal of Applied Chemistry, ;2017, 34(6): 656-663. doi: 10.11944/j.issn.1000-0518.2017.06.160382 shu

Preparation of Bi20TiO32/Polyacrylonitrile Composite Nanofibers and Their Photocatalytic Activity for Degradation of Isoproturon

  • Corresponding author: ZHANG Linping, zhang_lp@dhu.edu.cn MAO Zhiping, zhpmao@dhu.edu.cn
  • Received Date: 21 September 2016
    Revised Date: 17 January 2017
    Accepted Date: 17 January 2017

    Fund Project: the National Key Technology Research and Development Program 2014BAC13B02the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry 13W10539

Figures(6)

  • Visible-light responsive photocatalyst Bi20TiO32 was prepared through solvothermal method. To achieve the immobilization of photocatalysts, Bi20TiO32/polyacrylonitrile(PAN) composite nanofibers with different content of Bi20TiO32 were prepared by coaxial electrospinning method. Through this approach, the photocatalysts could be easily recycled, meanwhile, the contact area between photocatalysts and organic pollutants was enhanced during the degradation reaction. The prepared samples were characterized by X-ray diffraction spectra(XRD), scanning electron microscopy(SEM), transmission electron microscopy(TEM), ultraviolet-visible(UV-Vis) diffuse reflectance spectra(UV-Vis DRS) and N2 adsorption-desorption analysis. The photocatalytic activities of Bi20TiO32/PAN composite nanofibers were evaluated by the degradation of isoproturon herbicide under visible-light irradiation. The results show that the prepared Bi20TiO32 photocatalyst with a band gap energy 2.35 eV has a typical visible-light responsive property. The diameters of Bi20TiO32/PAN composite nanofibers are 600~700 nm. Bi20TiO32 is successfully loaded on the surface of nanofibers by this method and the composite materials have obvious visible-light responsibilities. The prepared samples exhibit great photocatalytic activity for degradation of isoproturon. The sample S3 at photocatalyst content 25.7% exhibits the highest removal efficiency of 87%. This research indicates that the photocatalysts immobilized on the organic nanofibers surface can retain their original photocatalytic activity. Coaxial electrospinning technology is a proper approach for the immobilization of photocatalysts.
  • 加载中
    1. [1]

      Allured B, DelaCruz S, Darling T. Enhancing the Visible Light Absorbance of Bi2Ti2O7 Through Fe-Substitution and Its Effects on Photocatalytic Hydrogen Evolution[J]. Appl Catal B, 2014,144:261-268. doi: 10.1016/j.apcatb.2013.07.019

    2. [2]

      Lin X, Lv P, Guan Q F. Bismuth Titanate Microspheres:Directed Synthesis and Their Visible Light Photocatalytic Activity[J]. Appl Surf Sci, 2012,258(18):7146-7153. doi: 10.1016/j.apsusc.2012.04.019

    3. [3]

      Zhu X Q, Zhang J L, Chen F. Study on Visible Light Photocatalytic Activity and Mechanism of Spherical Bi12TiO20 Nanoparticles Prepared by Low-Power Hydrothermal Method[J]. Appl Catal B, 2011,102(1/2):316-322.  

    4. [4]

      Cheng H F, Huang B B, Dai Y. Visible-Light Photocatalytic Activity of the Metastable Bi20TiO32 Synthesized by a High-Temperature Quenching Method[J]. J Solid State Chem, 2009,182(8):2274-2278. doi: 10.1016/j.jssc.2009.06.006

    5. [5]

      Zhou T F, Hu J C. Mass Production and Photocatalytic Activity of Highly Crystalline Metastable Single-Phase Bi20TiO32 Nanosheets[J]. Environ Sci Technol, 2010,44(22):8698-8703. doi: 10.1021/es1019959

    6. [6]

      Akkari M, Aranda P, Rhaiem H B. ZnO/Clay Nanoarchitectures:Synthesis, Characterization and Evaluation as Photocatalysts[J]. Appl Clay Sci, 2016,131:131-139. doi: 10.1016/j.clay.2015.12.013

    7. [7]

      PANG Bangyong, FU Yaqin. Preparation of Gd/Fe/S-TiO2 Photocatalysis Material and Its Visible Activity[J]. J Zhejiang Sci-Tech Univ, 2011,28(4):580-585.  

    8. [8]

      Mahmoodi N M, Rezvani M A, Oveisi M. Immobilized Polyoxometalate onto the Modified Magnetic Nanoparticle as a Photocatalyst for Dye Degradation[J]. Mater Res Bull, 2016,84:422-428. doi: 10.1016/j.materresbull.2016.08.042

    9. [9]

      DING Bin, YU Jianyong. Electrospining and Nanofibers[M]. 2nd Ed. Beijing:China Textile & Apparel Press, 2011:205-369(in Chinese).

    10. [10]

      Zhang X W, Xu S Y, Han G R. Fabrication and Photocatalytic Activity of TiO2 Nanofiber Membrane[J]. Mater Lett, 2009,63(21):1761-1763. doi: 10.1016/j.matlet.2009.05.038

    11. [11]

      Liu R L, Ye H Y, Xiong X P. Fabrication of TiO2/ZnO Composite Nanofibers by Electrospinning and Their Photocatalytic Property[J]. Mater Chem Phys, 2010,121(3):432-439. doi: 10.1016/j.matchemphys.2010.02.002

    12. [12]

      Liu Q, Zhang L, Chen J F. Synthesis of TiO2@ATO Core Shell Nanofibers Using Coaxial Electrospinning[J]. Mater Lett, 2014,137:339-342. doi: 10.1016/j.matlet.2014.09.026

    13. [13]

      Cao H B, Du P F, Song L X. Co-Electrospinning Fabrication and Photocatalytic Performance of TiO2/SiO2 Core/Sheath Nanofibers with Tunable Sheath Thickness[J]. Mater Res Bull, 2013,48(11):4673-4678. doi: 10.1016/j.materresbull.2013.08.035

    14. [14]

      Xie J L, Yang Y F, He H P. Facile Synthesis of Hierarchical Ag3PO4/TiO2 Nanofiber Heterostructures with Highly Enhanced Visible Light Photocatalytic Properties[J]. Appl Surf Sci, 2015,355:921-929. doi: 10.1016/j.apsusc.2015.07.175

    15. [15]

      Hao P, Zhao Z H, Tian J. Bismuth Titanate Nanobelts Through a Low-Temperature Nanoscale Solid-State Reaction[J]. Acta Mater, 2014,62:258-266. doi: 10.1016/j.actamat.2013.10.006

    16. [16]

      Butler M A, Ginley D S. Prediction of Flatband Potentials at Semiconductor-Electrolyte Interfaces from Atomic Electronegativities[J]. J Electrochem Soc, 1978,125(2):228-232. doi: 10.1149/1.2131419

    17. [17]

      Hou J G, Wang Z, Yang C. Hierarchically Plasmonic Z-Scheme Photocatalyst of Ag/AgCl Nanocrystals Decorated Mesoporous Single-crystalline Metastable Bi20TiO32 Nanosheets[J]. J Phys Chem C, 2013,117(10):5132-5141. doi: 10.1021/jp311996r

    18. [18]

      Sing K S W. Physisorption of Nitrogen by Porous Materials[J]. J Porous Mater, 1995,2(1):5-8. doi: 10.1007/BF00486564

  • 加载中
    1. [1]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    2. [2]

      Yang Xia Kangyan Zhang Heng Yang Lijuan Shi Qun Yi . 构建双通道路径增强iCOF/Bi2O3 S型异质结在纯水体系中光催化合成H2O2性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-. doi: 10.3866/PKU.WHXB202407012

    3. [3]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    4. [4]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    5. [5]

      Jianyin He Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030

    6. [6]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    7. [7]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    8. [8]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    9. [9]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    10. [10]

      Xia ZHANGYushi BAIXi CHANGHan ZHANGHaoyu ZHANGLiman PENGShushu HUANG . Preparation and photocatalytic degradation performance of rhodamine B of BiOCl/polyaniline. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 913-922. doi: 10.11862/CJIC.20240255

    11. [11]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    12. [12]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    13. [13]

      Jingyu Cai Xiaoyu Miao Yulai Zhao Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028

    14. [14]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

    15. [15]

      Ronghui LI . Photocatalysis performance of nitrogen-doped CeO2 thin films via ion beam-assisted deposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1123-1130. doi: 10.11862/CJIC.20240440

    16. [16]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    17. [17]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    18. [18]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    19. [19]

      Qin Hu Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024

    20. [20]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

Metrics
  • PDF Downloads(2)
  • Abstract views(714)
  • HTML views(151)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return