Citation: LI Tiemei, SONG Yuefei, WANG Nannan, WANG Xueyu. Research Progress on Dynamic Scaling Mechanism on Nanofiltration Membrane Surface for Saline Water Softening[J]. Chinese Journal of Applied Chemistry, ;2017, 34(4): 367-378. doi: 10.11944/j.issn.1000-0518.2017.04.160351 shu

Research Progress on Dynamic Scaling Mechanism on Nanofiltration Membrane Surface for Saline Water Softening

  • Corresponding author: SONG Yuefei, songyuefei@htu.edu.cn
  • Received Date: 2 September 2016
    Revised Date: 6 December 2016
    Accepted Date: 13 December 2016

    Fund Project: Supported by the National Natural Science Foundation of China No.21606074Henan Province Postdoctoral Science Foundation No.2015073China Postdoctoral Science Foundation No.2016M592297

Figures(3)

  • Membrane scaling is regarded as one of the key-problems for nanofiltration (NF) membrane separating performance during salt solution softening process. Most of the studies on NF membrane inorganic fouling were performed to comprehensively investigate the running conditions (such as NF permeate recovery and recycling ratio) on the scaling potential prediction and apply different techniques to characterize the NF membrane scaling morphology. However, only a few information was reported systematically about the mechanisms and processes of NF membrane surface dynamic scaling. The fundamental mechanisms and processes referred to sparing soluble precipitations and scaling are not cleared clarified. This paper focuses on the research progress for the mainly NF membrane scaling mechanisms (including crystallization and particulate fouling, bulk crystallization and surface crystallization), which play critical roles during scale formation on NF membrane surface. Besides, it is introduced in detail for the resistance (including membrane resistance, concentration polarization resistance, cake resistance and pore-block resistance) models used to quantify NF membrane inorganic fouling. In addition, the scaling processes including concentration polarization stage, nucleation stage, crystallization and deposition stage, respectively, on the NF membrane surface are introduced briefly. Finally, the further development as well as challenges on dynamic scaling mechanism on NF membrane surface for saline water softening are suggested.
  • 加载中
    1. [1]

      Comerton A M, Andrews R C, Bagley D M. The Influence of Natural Organic Matter and Cations on Fouled Nanofiltration Membrane Effective Molecular Weight Cut-off[J]. J Membr Sci, 2009,327(1/2):155-163.

    2. [2]

      Rohani R, Hyland M, Patterson D. A Refined One-filtration Method for Aqueous Based Nanofiltration and Ultrafiltration Membrane Molecular Weight Cut-off Determination Using Polyethylene Glycols[J]. Fuel Energy Abstr, 2011,382(1/2):278-290.  

    3. [3]

      Llenas L, Martí nez-Lladó X, Yaroshchuk A. Nanofiltration as Pretreatment for Scale Prevention in Seawater Reverse Osmosis Desalination[J]. Desalin Water Treat, 2011,36(1/2/3):310-318.  

    4. [4]

      FANG Yanyan, LI Qian, WANG Xiaolin. Nanofiltration Understanding:A Separation Process of Molecular Level with Nano-scale Effect[J]. Prog Chem, 2012,24(5):863-870.  

    5. [5]

      Wang D X, Wang X L, Tomi Y. Modeling the Separation Performance of Nanofiltration Membranes for the Mixed Salts Solution[J]. J Membr Sci, 2006,280(1):734-743.  

    6. [6]

      Figoli A, Cassano A, Criscuoli A. Influence of Operating Parameters on the Arsenic Removal by Nanofiltration[J]. Water Res, 2010,44(1):97-104. doi: 10.1016/j.watres.2009.09.007

    7. [7]

      XIAO Yutang, XU Shuangshaung, LI Zhihua. Process of Applied Research on TiO2 Photocatalysis-membrane Separation Coupling Technology in Water and Wastewater Treatments[J]. Chinese Sci Bull, 2010,55(12):1085-1093.  

    8. [8]

      Diawara C K, Paugam L, Pontié M. Influence of Chloride, Nitrate, and Sulphate on the Removal of Fluoride Ions by Using Nanofiltration Membranes[J]. Sep Sci Technol, 2005,40(16):3339-3347. doi: 10.1080/01496390500423706

    9. [9]

      XIONG Rongchun, LEI Xiaodong, WEI Gang. The Characteristic Parameters and Working Curves for Nanofiltration Membrane Containing γ-Al2O3[J]. Chinese Sci Bull, 2003,48(7):665-667.  

    10. [10]

      Bader M S H. Innovative Technologies to Solve Oil-fields Water Injection Sulfate Problems[J]. Desalination, 2006,201(1/2/3):121-129.

    11. [11]

      Mustafa G, Wyns K, Buekenhoudt A. New Insights into the Fouling Mechanism of Dissolved Organic Matter Applying Nanofiltration Membrane with a Variety of Surface Chemistries[J]. Water Res, 2016,93:195-204. doi: 10.1016/j.watres.2016.02.030

    12. [12]

      Song Y, Su B, Gao X. Investigation on High NF Permeate Recovery and Scaling Potential Prediction in NF-SWRO Integrated Membrane Operation[J]. Desalination, 2013,330(330):61-69.  

    13. [13]

      Galanakis C M, Fountoulis G, Gekas V. Nanofiltration of Brackish Groundwater by Using a Polypiperazine Membrane[J]. Desalination, 2012,286(286):277-284.  

    14. [14]

      Mohammad A W, Teow Y H, Ang W L. Nanofiltration Membranes Review:Recent Advances and Future Prospects[J]. Desalination, 2015,356:226-254. doi: 10.1016/j.desal.2014.10.043

    15. [15]

      Lin C J, Shirazi S, Shakya P S. Mechanistic Model for CaSO4 Fouling on Nanofiltration Membrane[J]. J Environ Eng, 2007,133(9):942-943. doi: 10.1061/(ASCE)0733-9372(2007)133:9(942)

    16. [16]

      Lin C J, Shirazi S, Rao P. Effects of Operational Parameters on Cake Formation of CaSO4 in Nanofiltration[J]. Water Res, 2006,40(4):806-816. doi: 10.1016/j.watres.2005.12.013

    17. [17]

      Shirazi S, Lin C J, Doshi S. Comparison of Fouling Mechanism by CaSO4 and CaHPO4 on Nanofiltration Membranes[J]. Sep Sci Technol, 2007,41(13):2861-2882.  

    18. [18]

      Shirazi S, Lin C J, Chen D. Inorganic Fouling of Pressure-driven Membrane Processes:A Critical Review[J]. Desalination, 2010,250(1):236-248. doi: 10.1016/j.desal.2009.02.056

    19. [19]

      Oron G, Gillerman L, Manor Y. Surrogating Membrane Resistance Variables for Assessing Reverse Osmosis Fouling During Wastewater Upgrading for Unrestricted Use[J]. J Membr Sci, 2016,520:990-997. doi: 10.1016/j.memsci.2016.08.024

    20. [20]

      Lee E, An A K J, Hadi P. Characterizing Flat Sheet Membrane Resistance Fraction of Chemistry Enhanced Backflush[J]. Chem Eng J, 2016,284:61-67. doi: 10.1016/j.cej.2015.08.136

    21. [21]

      Ochando-Pulido Verardo J M V, Carretero A S. Analysis of the Concentration Polarization and Fouling Dynamic Resistances under Reverse Osmosis Membrane Treatment of Olive Mill Wastewater[J]. J Ind Eng Chem, 2015,31:132-141. doi: 10.1016/j.jiec.2015.06.017

    22. [22]

      Vigneswaran S, Kwon D Y. Effect of Ionic Strength and Permeate Flux on Membrane Fouling:Analysis of Forces Acting on Particle Deposit and Cake Formation[J]. KSCE J Civil Eng, 2014,19(6):1604-1611.  

    23. [23]

      Xu L, Sun Y, Du L. Removal of Tetracycline Hydrochloride from Wastewater by Nanofiltration Enhanced by Electro-catalytic Oxidation[J]. Desalination, 2014,352:58-65. doi: 10.1016/j.desal.2014.08.013

    24. [24]

      Luo J, Morthensen S T, Meyer A S. Filtration Behavior of Casein Glycomacropeptide (CGMP) in an Enzymatic Membrane Reactor:Fouling Control by Membrane Selection and Threshold Flux Operation[J]. J Membr Sci, 2014,469(6):127-139.  

    25. [25]

      Pulido J M, Verardo V, Carretero A. Analysis of the Concentration Polarization and Fouling Dynamic Resistance under Reverse Osmosis Membrane Treatment of Olive Mill Wastewater[J]. J Ind Eng Chem, 2015,31:132-141. doi: 10.1016/j.jiec.2015.06.017

    26. [26]

      Song L, Elimelech M. Theory of Concentration Polarization in Crossflow Filtration[J]. J Chem Soc Trans, 1995,91(19):3389-3398. doi: 10.1039/ft9959103389

    27. [27]

      Listiarini K, Wei C, Sun D D. Fouling Mechanism and Resistance Analyses of Systems Containing Sodium Alginate, Calcium, Alum and Their Combination in Dead-end Fouling of Nanofiltration Membranes[J]. J Membr Sci, 2009,344(1/2):244-251.  

    28. [28]

      Methatham T, Ratanatamskul C. Effect of a Longer Cleaning-frequency Period on Nanofiltration Membrane Fouling for Long-term Water Supply Production[J]. Desalin Water Treat, 2012,32(1):256-261.

    29. [29]

      Mattaraj S, Jarusutthirak C, Charoensuk C. A Combined Pore Blockage, Osmotic Pressure, and Cake Filtration Model for Crossflow Nanofiltration of Natural Organic Matter and Inorganic Salts[J]. Desalination, 2011,274(1/2/3):182-191.  

    30. [30]

      Salgado C, Palacio L, Carmona F J. Influence of Low and High Molecular Weight Compounds on the Permeate Flux Decline in Nanofiltration of Red Grape Must[J]. Desalination, 2013,315(9):124-134.

    31. [31]

      Li J, Zhao L, Wang Y. Analysis of Membrane Fouling by Proteins During Nanofiltration of Chitin Alkali Wastewater[J]. J Water Reuse Desalin, 2014,4(4):115-122.  

    32. [32]

      Listiarini K, Chun W, Sun D D. Fouling Mechanism and Resistance Analyses of Systems Containing Sodium Alginate, Calcium, Alum and Their Combination in Dead-end Fouling of Nanofiltration Membrane[J]. J Membr Sci, 2009,344(1/2):244-251.  

    33. [33]

      Kovacs Z, Samhaber W. Nanofiltration of Concentrated Amino Acid Solutions[J]. Desalination, 2009,240(1/2/3):78-88.  

    34. [34]

      Guan J, Amal R, Waite T D. Effect of Floc Size and Structure on Biosolids Capillary Suction Time[J]. Water Sci Technol, 2003,47(12):255-260.  

    35. [35]

      Madaeni S S, Zinadini S, Vatanpour V. Preparation of Superhydrophobic Nanofiltration Membrane by Embedding Multiwalled Carbon Nanotube and Polydimethylsiloxane in Pores of Microfiltration Membrane[J]. Sep Purif Technol, 2013,111(25):98-107.  

    36. [36]

      Kaya Y, Barlas H, Arayici S. Evaluation of Fouling Mechanisms in the Nanofiltration of Solutions with High Anionic and Nonionic Surfactant Contents Using a Resistance-in-series Model[J]. Fuel Energy Abstr, 2011,367(1):45-54.  

    37. [37]

      Li Z, Lu X, Wu C. Study of Interfacial Activation of Dual Surfactants in the Process of Forming Porous Membranes[J]. J Membr Sci, 2016,520:823-831. doi: 10.1016/j.memsci.2016.08.023

    38. [38]

      Feng L, Zhu A, Wang X L. Membrane Flux and CaCO3 Crystallization in the Unstirred Dead-end Nanofiltration of Magnetic Solution[J]. Desalination, 2005,186(1/2/3):243-254.  

    39. [39]

      Lin C J, Shirazi S, Rao P. Mechanistic Model for CaSO4 Fouling on Nanofiltration Membrane[J]. J Environ Eng, 2005,131(10):1387-1392. doi: 10.1061/(ASCE)0733-9372(2005)131:10(1387)

    40. [40]

      Tang C Y, Fu Q S, Criddle C S. Effect of Flux (Transmembrane Pressure) and Membrane Properties on Fouling and Rejection of Reverse Omosis and Nanofiltration Membranes Treating Perfluororooctane Sulfonate Containing Wastewater[J]. Environ Sci Technol, 2007,41(6):2008-2014. doi: 10.1021/es062052f

    41. [41]

      Luo J, Ding L, Yi S. Concentration Polarization in Concentrated Saline Solution During Desalination of Iron Dextran by Nanofiltration[J]. J Membr Sci, 2010,363(1/2):170-179.  

    42. [42]

      Déon S, Dutourni P, Fievet P. Concentration Polarization Phenomenon During the Nanofiltration of Multi-ionic Solutions:Influence of the Filtrated Solution and Operating Conditions[J]. Water Res, 2013,47(7):2260-2272. doi: 10.1016/j.watres.2013.01.044

    43. [43]

      Geraldes V, Afonso M D. Prediction of the Concentration Polarization in the Nanofiltration/Reverse Osmosis of Dilute Multi-ionic Solutions[J]. J Membr Sci, 2007,300(1/2):20-27.  

    44. [44]

      Radu A I, Bergwerff L, Loosdrecht M C M V. A Two-dimensional Mechanistic Model for Scaling in Spiral Wound Membrane Systems[J]. Chem Eng J, 2014,241(4):77-91.  

    45. [45]

      Bader M S H. Nanofiltration for Oil-fields Water Injection Operations:Analysis of Concentration Polarization[J]. Desalination, 2006,201(1/2/3):106-113.  

    46. [46]

      Peña J, Buil B, Garralón A. The Vaterite Saturation Index can be Used as a Proxy of the S & DSI in Sea Water Desalination by Reverse Osmosis Process[J]. Desalination, 2010,254(1/2/3):75-79.

    47. [47]

      Song Y, Gao X, Gao C. Evaluation of Scaling Potential in a Pilot-scale NF-SWRO Integrated Seawater Desalination System[J]. J Membr Sci, 2013,443(443):201-209.  

    48. [48]

      Vogel D, Simon A, Alturki A A. Effects of Fouling and Scaling on the Retention of Trace Organic Contaminants by a Nanofiltration Membrane:The Role of Cake-enhanced Concentration Polarization[J]. Sep Purif Technol, 2010,73(73):256-263.  

    49. [49]

      Tu K L, Chivas A R, Long D N. Effects of Membrane Fouling and Scaling on Boron Rejection by Nanofiltration and Reverse Osmosis Membranes[J]. Desalination, 2011,279(1):269-277.  

    50. [50]

      Ong C S, Goh P S, Lau W J. Nanomaterials for Biofouling and Scaling Mitigation of Thin Film Composite Membrane:A Review[J]. Desalination, 2016,393:2-15. doi: 10.1016/j.desal.2016.01.007

    51. [51]

      Wang J, Wang L, Miao R. Enhanced Gypsum Scaling by Organic Fouling Layer on Nanofiltration Membrane:Characteristics and Mechanisms[J]. Water Res, 2016,91:203-213. doi: 10.1016/j.watres.2016.01.019

    52. [52]

      Uchymiak M, Lyster E, Glater J. Kinetics of Gypsum Crystal Growth on a Reverse Osmosis Membrane[J]. J Membr Sci, 2008,314(1):163-172.  

    53. [53]

      OUYANG Jianming, ZHANG Guangna, WANG Fengxin. Nucleation, Growth, and Aggregation of Nanocrystallites in Urine of Calcium Oxalate Stone Patients as Well as Kidney Stone Formation[J]. Prog Chem, 2013,25(4):642-649.  

    54. [54]

      Lee S, Lee C H. Scale Formation in NF/RO:Mechanism and Control[J]. Water Sci Technol, 2005,51(6/7):267-275.

    55. [55]

      Sch efer A I, Fane A G, Waite T D. Nanofiltration:Principles and Applications[J]. Adv Technol, 2005,193:249-256.  

    56. [56]

      Helal A M. Hybridization-A New Trend in Desalination[J]. Desalin Water Treat, 2012,3(1):120-135.  

    57. [57]

      Khan M T, Aubry D O, Gutierrez L. Kinetic Study of Seawater Reverse Osmosis Membrane Fouling[J]. Environ Sci Technol, 2013,47(19):10884-10894. doi: 10.1021/es402138e

    58. [58]

      Saqib J, Aljundi I H. Membrane Fouling and Modification Using Surface Treatment and Layer-by-layer Assembly of Polyelectrolytes:State-of the-art Review[J]. J Water Process Eng, 2016,11:68-87. doi: 10.1016/j.jwpe.2016.03.009

    59. [59]

      She Q, Wang R, Fane A G. Membrane Fouling in Osmotically Driven Membrane Processes:A Review[J]. J Membr Sci, 2016,499:201-233. doi: 10.1016/j.memsci.2015.10.040

    60. [60]

      Elimelech M, Zhu X. Colloidal Fouling of Reverse Osmosis Membranes[J]. Water Waste Treat, 2015,220:335-344.

    61. [61]

      Hasson D. Water Desalination:Reviews in Chemical Engineering[J]. Rev Chem Eng, 2012,28(1):43-60.

    62. [62]

      Oh H J, Choung Y K, Lee S. Scale Formation in Reverse Osmosis Desalination:Model Development[J]. Desalination, 2009,238(1):333-346.  

    63. [63]

      Naidu G, Jeong S, Vigneswaran S. Influence of Feed/Permeate Velocity on Scaling Development in a Direct Contact Membrane Distillation[J]. Sep Purif Technol, 2014,125(14):291-300.  

    64. [64]

      Liu Y, Mi B. Combined Fouling of Forward Osmosis Membranes:Synergistic Foulant Interaction and Direct Observation of Fouling Layer Formation[J]. J Membr Sci, 2012,407(14):136-144.  

    65. [65]

      Tomaszewska B, Bodzek M. Desalination of Geothermal Waters Using a Hybrid UF-RO Process.Part Ⅱ:Membrane Scaling after Pilot-scale Tests[J]. Desalination, 2013,319(2013):107-114.  

    66. [66]

      Hasson D, Drak A, Semiat R. Inception of CaSO4 Scaling on RO Membranes at Various Water Recovery Levels[J]. Desalination, 2001,139(1/2/3):73-81.  

    67. [67]

      Al-Amoudi A, Lovitt R W. Fouling Strategies and the Cleaning System of NF Membranes and Factors Affecting Cleaning Efficiency[J]. J Membr Sci, 2007,303(1/2):4-28.  

    68. [68]

      Hu Z, Antony A, Leslie G. Real-time Monitoring of Scale Formation in Reverse Osmosis Using Electrical Impedance Spectroscopy[J]. J Membr Sci, 2014,453(3):320-327.  

    69. [69]

      Mitrouli S, Karabelas A J, Karanasiou A. Incipient Calcium Carbonate Scaling of Desalination Membranes in Narrow Channels with Spacers-experimental Insights[J]. J Membr Sci, 2013,425(1):48-57.  

    70. [70]

      Cobry K D, Yuan Z, Gilron J. Comprehensive Experimental Studies of Early-stage Membrane Scaling During Nanofiltration[J]. Desalination, 2011,283(12):40-51.  

    71. [71]

      Yang H L, Huang C, Pan J R. Characteristics of RO Foulants in a Brackish Water Desalination Plant[J]. Desalination, 2008,220(1/2/3):353-358.  

    72. [72]

      Dydo P, Turek M, Ciba J. Scaling Analysis of Nanofiltration Systems Fed with Saturated Calcium Sulfate Solutions in the Presence of Carbonate Ions[J]. Desalination, 2003,159(3):245-251. doi: 10.1016/S0011-9164(03)90076-2

    73. [73]

      Bhattacharjee S, Johnston G M. A Model of Membrane Fouling by Salt Precipitation from Multicomponent Ionic Mixtures in Crossflow Nanofiltration[J]. Environ Eng, 2002,19(6):399-412. doi: 10.1089/109287502320963391

    74. [74]

      Lee S, Kim J, Lee C H. Analysis of CaSO4 Scale Formation Mechanism in Various Nanofiltration Modules[J]. J Membr Sci, 1999,163(1):63-74. doi: 10.1016/S0376-7388(99)00156-8

    75. [75]

      Gilron J, Hasson D. Analysis of Laminar Flow Precipitation Fouling on Reverse Osmosis Membranes[J]. Desalination, 1986,60(1):9-24. doi: 10.1016/0011-9164(86)80002-9

    76. [76]

      Okazaki M, Kimura S. Scale Formation on Reverse-osmosis Membranes[J]. J Chem Eng Jpn, 1984,17(2):145-151. doi: 10.1252/jcej.17.145

    77. [77]

      Tang Y, Lin H, Liu T. Multiscale Simulation on the Membrane Formation Process Via Thermally Induced Phase Separation Accompanied with Heat Transfer[J]. J Membr Sci, 2016,515:258-267. doi: 10.1016/j.memsci.2016.04.024

    78. [78]

      Alborzfar M, Jonsson G, Grøn C. Removal of Natural Organic Matter from Two Types of Humic Ground Waters by Nanofiltration[J]. Water Res, 1998,32(10):2983-2994. doi: 10.1016/S0043-1354(98)00063-3

    79. [79]

      Hasson D, Shemer H, Brook I. Scaling Propensity of Seawater in RO Boron Removal Processes[J]. Fuel Energy Abstr, 2011,384(384):198-204.  

    80. [80]

      Dydo P, Turek M, Ciba J. The Nucleation Kinetic Aspects of Gypsum Nanofiltration Membrane Scaling[J]. Desalination, 2004,164(1):41-52. doi: 10.1016/S0011-9164(04)00154-7

    81. [81]

      Lyster E, Kim M M, Au J. A Method for Evaluating Antiscalant Retardation of Crystal Nucleation and Growth on RO Membranes[J]. J Membr Sci, 2010,364(1/2):122-131.  

    82. [82]

      Reznik I J, Gavrieli I, Antler G. Kinetics of Gypsum Crystal Growth From High Ionic Strength Solutions:A Case Study of Dead Seawater Mixtures[J]. Geochim Cosmochim Acta, 2011,75(8):2187-2199. doi: 10.1016/j.gca.2011.01.034

    83. [83]

      Pervov A G. Scale Formation Prognosis and Cleaning Procedure Schedules in Reverse Osmosis Systems Operation[J]. Desalination, 1991,83(125):77-118.  

  • 加载中
    1. [1]

      Yuejiao An Wenxuan Liu Yanfeng Zhang Jianjun Zhang Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021

    2. [2]

      Jianyin He Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030

    3. [3]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    4. [4]

      Jingwen Wang Minghao Wu Xing Zuo Yaofeng Yuan Yahao Wang Xiaoshun Zhou Jianfeng Yan . Advances in the Application of Electrochemical Regulation in Investigating the Electron Transport Properties of Single-Molecule Junctions. University Chemistry, 2025, 40(3): 291-301. doi: 10.12461/PKU.DXHX202406023

    5. [5]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    6. [6]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    7. [7]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    8. [8]

      Yujia LITianyu WANGFuxue WANGChongchen WANG . Direct Z-scheme MIL-100(Fe)/BiOBr heterojunctions: Construction and photo-Fenton degradation for sulfamethoxazole. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 481-495. doi: 10.11862/CJIC.20230314

    9. [9]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    10. [10]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    11. [11]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    12. [12]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    13. [13]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    14. [14]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    15. [15]

      Jianyu Qin Yuejiao An Yanfeng ZhangIn Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002

    16. [16]

      Kaihui Huang Dejun Chen Xin Zhang Rongchen Shen Peng Zhang Difa Xu Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020

    17. [17]

      Hao GUOTong WEIQingqing SHENAnqi HONGZeting DENGZheng FANGJichao SHIRenhong LI . Electrocatalytic decoupling of urea solution for hydrogen production by nickel foam-supported Co9S8/Ni3S2 heterojunction. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2141-2154. doi: 10.11862/CJIC.20240085

    18. [18]

      Yingqi BAIHua ZHAOHuipeng LIXinran RENJun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259

    19. [19]

      Jinwang Wu Qijing Xie Chengliang Zhang Haifeng Shi . 自旋极化增强ZnFe1.2Co0.8O4/BiVO4 S型异质结光催化性能降解四环素. Acta Physico-Chimica Sinica, 2025, 41(5): 100050-. doi: 10.1016/j.actphy.2025.100050

    20. [20]

      Xinyu Miao Hao Yang Jie He Jing Wang Zhiliang Jin . 调整Keggin型多金属氧酸盐电子结构构建S型异质结用于光催化析氢. Acta Physico-Chimica Sinica, 2025, 41(6): 100051-. doi: 10.1016/j.actphy.2025.100051

Metrics
  • PDF Downloads(4)
  • Abstract views(913)
  • HTML views(151)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return