Citation: WANG Ning, ZHOU Dongxue, YANG Jinchuang, AN Yue, LYU Chengwei. Determination of Hydrogen Sulfide in Water by Biphenyl Ratio Fluorescence Probe[J]. Chinese Journal of Applied Chemistry, ;2017, 34(4): 449-455. doi: 10.11944/j.issn.1000-0518.2017.04.160301 shu

Determination of Hydrogen Sulfide in Water by Biphenyl Ratio Fluorescence Probe

  • Corresponding author: AN Yue, anyue_11@163.com LYU Chengwei, chengweilv@126.com
  • Received Date: 28 July 2016
    Revised Date: 9 October 2016
    Accepted Date: 9 November 2016

    Fund Project: the Higher Education Research Program of Education Department of Liaoning Province of China L2014421the National Natural Science Foundation of China 21403100

Figures(8)

  • A biphenyl-derived ratiometric fluorescent probe (WN) for the detection of H2S was synthesized using 4, 4'-biphenyl dicarboxylic acid as the raw material and characterized by 1H NMR, 13C NMR, and MS. For the purpose of detection of H2S in aqueous solution, its fluorescent properties had been systematically researched. The results show that probe WN exhibits good sensitivity and selectivity for detection of H2S, response time is 12 min. WN has strong anti-interference ability to biological mercaptan (Cys, Gsh), active oxides (H2O2, ClO-), various anions and cations (H2PO4-, SO42-, Cl-, HCO3-, CO32-, Mg2+, Zn2+, K+, Ca2+, Na+), and a good fluorescence response in a wide pH range, the fluorescence in tensity has good linear relation ships with H2S in the range of 1.1~350 μmol/L (R2=0.9943), the detection limit of H2S is estimated to be 1.07×10-6 mol/L. The test for three different water samples shows that the probe WN has a certain application significance in the detection of H2S in water.
  • 加载中
    1. [1]

      Riesch R, Plath M, Schlupp I. Colonisation of Toxic Environments Drives Predictable Life-History Evolution in Livebearing Fishes (Poeciliidae)[J]. Ecol Lett, 2014,17(1):65-71. doi: 10.1111/ele.2013.17.issue-1

    2. [2]

      LI Haijian. Reasons and Countermeasures of Hydrogen Sulfide in Water[J]. Sci Fish Farm, 2002(10)34.  

    3. [3]

      Hou P, Li H, Chen S. A Highly Selective and Sensitive 3-Hydroxyflavone-based Colorimetric and Fluorescent Probe for Hydrogen Sulfide with a Large Stokes Shift[J]. Tetrahedron, 2016,72(24):3531-3534. doi: 10.1016/j.tet.2016.04.079

    4. [4]

      Yang Y, Lei Y, Zhang X. A Ratiometric Strategy to Detect Hydrogen Sulfide with a Gold Nanoclusters Based Fluorescent Probe[J]. Talanta, 2016,154:190-196. doi: 10.1016/j.talanta.2016.03.066

    5. [5]

      Hu L F, Lu M, Wu Z Y. Hydrogen Sulfide Inhibits Rotenone-induced Apoptosis via Preservation of Mitochondrial Function[J]. Mol Pharmacol, 2009,75(1):27-34. doi: 10.1124/mol.108.047985

    6. [6]

      Kulkarni K H, Monjok E M, Zeyssig R. Effect of Hydrogen Sulfide on Sympathetic Neurotransmission and Catecholamine Levels in Isolated Porcine Iris-Ciliary Body[J]. Neurochem Res, 2009,34(3):400-406. doi: 10.1007/s11064-008-9793-7

    7. [7]

      Kimura H. Hydrogen Sulfide:Its Production, Release and Functions[J]. Amino Acids, 2011,41(1):113-121. doi: 10.1007/s00726-010-0510-x

    8. [8]

      Schiavon G, Zotti G, Toniolo R. Electrochemical Detection of Trace Hydrogen Sulfide in Gaseous Samples by Porous Silver Electrodes Supported on Ion-Exchange Membranes (Solid Polymer Electrolytes)[J]. Anal Chem, 1995,67(2):318-323. doi: 10.1021/ac00098a015

    9. [9]

      Guenther E A, Johnson K S, Coale K H. Direct Ultraviolet Spectrophotometric Determination of Total Sulfide and Iodide in Natural Waters[J]. Anal Chem, 2001,73(14):3481-3487. doi: 10.1021/ac0013812

    10. [10]

      Kass M, Ivaska A. Spectrophotometric Determination of Sulphur Dioxide and Hydrogen Sulphide in Gas Phase by Sequential Injection Analysis Technique[J]. Anal Chim Acta, 2001,449(1):189-197.

    11. [11]

      Bramanti E, D'Ulivo L, Lomonte C. Determination of Hydrogen Sulfide and Volatile Thiols in Air Samples by Mercury Probe Derivatization Coupled with Liquid Chromatography Atomic Fluorescence Spectrometry[J]. Anal Chim Acta, 2006,579(1):38-46. doi: 10.1016/j.aca.2006.07.004

    12. [12]

      Ubuka T, Abe T, Kajikawa R. Determination of Hydrogen Sulfide and Acid-Labile Sulfur in Animal Tissues by Gas Chromatography and Ion Chromatography[J]. J Chromatogr B:Biomed Sci Appl, 2001,757(1):31-37. doi: 10.1016/S0378-4347(01)00046-9

    13. [13]

      Tang L, Zheng Z, Zhong K. A 2, 5-Diaryl-1, 3, 4-Oxadiazole-Based Fluorescent Probe for Rapid and Highly Selective Recognition of Hydrogen Sulfide with a Large Stokes Shift Through Switching on ESIPT[J]. Tetrahedron Lett, 2016,57(12):1361-1364. doi: 10.1016/j.tetlet.2016.02.056

    14. [14]

      Chen S, Hou P, Song X. A Red-Emitting Fluorescent Probe for Imaging Hydrogen Sulphide with a Large Stokes Shift[J]. Sens Actuators B:Chem, 2015,221:951-955. doi: 10.1016/j.snb.2015.07.020

    15. [15]

      Zhang C, Peng B, Chen W. A Ratiometric Fluorescent Probe for Hydrogen Sulfide Based on the Nucleophilic Substitution-Cyclization of Diselenides[J]. Dyes Pigm, 2015,121:299-304. doi: 10.1016/j.dyepig.2015.06.003

    16. [16]

      Chen Y, Zhu C, Yang Z. A Ratiometric Fluorescent Probe for Rapid Detection of Hydrogen Sulfide in Mitochondria[J]. Angew Chem Int Ed, 2013,125(6):1732-1735. doi: 10.1002/ange.v125.6

    17. [17]

      Kumar N, Bhalla V, Kumar M. Recent Developments of Fluorescent Probes for the Detection of Gasotransmitters (NO, CO and H2S)[J]. Coord Chem Rev, 2013,257(15):2335-2347.

    18. [18]

      Huang Y, Zhang C, Xi Z. Synthesis and Characterizations of a Highly Sensitive and Selective Fluorescent Probe for Hydrogen Sulfide[J]. Tetrahedron, 2016,57(10):1187-1191. doi: 10.1016/j.tetlet.2016.02.017

    19. [19]

      CHEN Hongrong, WU Ya'nan, CHEN Shiyan. "Naked-eye" and Fluorescence "Turn-on" Recognition of Al3+ Based on 2-Hydroxy-Naphthalene-Formaldehyde Benzoyl-Hydrazone Derivatives[J]. Chinees J Appl Chem, 2016,33(5):599-605. doi: 10.11944/j.issn.1000-0518.2016.05.150333 

    20. [20]

      Komatsu T, Urano Y, Fujikawa Y. Development of 2, 6-Carboxy-Substituted Boron Dipyrromethene (BODIPY) as a Novel Scaffold of Ratiometric Fluorescent Probes for Live Cell Imaging[J]. Chem Commun, 2009,45(45):7015-7017.  

    21. [21]

      Lim C S, Masanta G, Kim H J. Ratiometric Detection of Mitochondrial Thiols with a Two-Photon Fluorescent Probe[J]. J Am Chem Soc, 2011,133(29):11132-11135. doi: 10.1021/ja205081s

    22. [22]

      Zhang J F, Lim C S, Bhuniya S. A Highly Selective Colorimetric and Ratiometric Two-Photon Fluorescent Probe for Fluoride Ion Detection[J]. Org Lett, 2011,13(5):1190-1193. doi: 10.1021/ol200072e

    23. [23]

      Peng H, Cheng Y, Dai C. A Fluorescent Probe for Fast And Quantitative Detection of Hydrogen Sulfide in Blood[J]. Angew Chem Int Ed, 2011,50(41):9672-9675. doi: 10.1002/anie.201104236

    24. [24]

      Sun W, Fan J, Hu C. A Two-Photon Fluorescent Probe with Near-Infrared Emission for Hydrogen Sulfide Imaging in Biosystems[J]. Chem Commun, 2013,49(37):3890-3892. doi: 10.1039/c3cc41244j

    25. [25]

      Curiel D, Sánchez G, Más-Montoya M. Rational Design of a Fluorescent Receptor for the Recognition of Anthrax Biomarker Dipicolinate[J]. Analyst, 2012,137(23):5499-5501. doi: 10.1039/c2an35895f

    26. [26]

      Liu Y, Fei Q, Shan H. A Novel Fluorescent 'Off-On-Off' Probe for Relay Recognition of Zn2+ and Cu2+ Derived from N, N-Bis (2-pyridylmethyl) Amine[J]. Analyst, 2014,139(8):1868-1875. doi: 10.1039/c3an02230g

    27. [27]

      Xu J, Zhang Y, Yu H. Mitochondria-Targeted Fluorescent Probe for Imaging Hydrogen Peroxide in Living Cells[J]. Anal Chem, 2015,88(2):1455-1461.

    28. [28]

      Huang Z, Ding S, Yu D. Aldehyde Group Assisted Thiolysis of Dinitrophenyl Ether:A New Promising Approach for Efficient Hydrogen Sulfide Probes[J]. Chem Commun, 2014,50(65):9185-9187. doi: 10.1039/C4CC03818E

    29. [29]

      Dale T J, Rebek J. Fluorescent Sensors for Organophosphorus Nerve Agent Mimics[J]. J Am Chem Soc, 2006,128(14):4500-4501. doi: 10.1021/ja057449i

  • 加载中
    1. [1]

      Linfang ZHANGWenzhu YINGui YIN . A 2-dicyanomethylene-3-cyano-4,5,5-trimethyl-2,5-dihydrofuran-based near-infrared fluorescence probe for the detection of hydrogen sulfide and imaging of living cells. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 540-548. doi: 10.11862/CJIC.20240405

    2. [2]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    3. [3]

      Zhicheng JUWenxuan FUBaoyan WANGAo LUOJiangmin JIANGYueli SHIYongli CUI . MOF-derived nickel-cobalt bimetallic sulfide microspheres coated by carbon: Preparation and long cycling performance for sodium storage. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 661-674. doi: 10.11862/CJIC.20240363

    4. [4]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    5. [5]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    6. [6]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    7. [7]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    8. [8]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    9. [9]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    10. [10]

      Liyang ZHANGDongdong YANGNing LIYuanyu YANGQi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079

    11. [11]

      Yikai Wang Xiaolin Jiang Haoming Song Nan Wei Yifan Wang Xinjun Xu Cuihong Li Hao Lu Yahui Liu Zhishan Bo . 氰基修饰的苝二酰亚胺衍生物作为膜厚不敏感型阴极界面材料用于高效有机太阳能电池. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-. doi: 10.3866/PKU.WHXB202406007

    12. [12]

      Peng GENGGuangcan XIANGWen ZHANGHaichuang LANShuzhang XIAO . Hollow copper sulfide loaded protoporphyrin for photothermal-sonodynamic therapy of cancer cells. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1903-1910. doi: 10.11862/CJIC.20240155

    13. [13]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    14. [14]

      Min LIUHuapeng RUANZhongtao FENGXue DONGHaiyan CUIXinping WANG . Neutral boron-containing radical dimers. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 123-130. doi: 10.11862/CJIC.20240362

    15. [15]

      Xue Liu Lipeng Wang Luling Li Kai Wang Wenju Liu Biao Hu Daofan Cao Fenghao Jiang Junguo Li Ke Liu . Cu基和Pt基甲醇水蒸气重整制氢催化剂研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-. doi: 10.1016/j.actphy.2025.100049

    16. [16]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    17. [17]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

    18. [18]

      Mingyang Men Jinghua Wu Gaozhan Liu Jing Zhang Nini Zhang Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019

    19. [19]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    20. [20]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

Metrics
  • PDF Downloads(0)
  • Abstract views(817)
  • HTML views(29)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return