Citation: LEI Jiao, LUO Li, FU Weiwei, ZHOU Wenjun. Microwave-Assisted Synthesis of Benzoxazoles in Glycerol[J]. Chinese Journal of Applied Chemistry, ;2017, 34(3): 324-329. doi: 10.11944/j.issn.1000-0518.2017.03.160243 shu

Microwave-Assisted Synthesis of Benzoxazoles in Glycerol

  • Corresponding author: ZHOU Wenjun, chemzhwj@126.com
  • Received Date: 13 June 2016
    Revised Date: 27 July 2016
    Accepted Date: 15 August 2016

    Fund Project: Supported by the Sichuan Province Education Office Fostering Projects No.15Z0026the Startup Foundation of Ph. D. Scientific Research of Neijiang Normal University No.2012B05

Figures(1)

  • Benzoxazole derivatives are well known for their applications in medicinal, industrial and synthetic organic chemistry. Numerous effects has been focused on developing efficient methods for the synthesis of it. The benzoxazole derivatives was synthesised by condensation of 2-aminophenol and benzaldehyde in presence of glycerol under focused microwave-irradiation conditions. Reaction conditions:2-aminothiophenol(1.0 mmol), benzaldehyde(1.0 mmol), glycerol(2 mL), irradiating under focused microwave for several minutes at 20 W and 110℃. The corresponding products was obtained in 80% to 91% yield. The present method has the advantages of mild conditions, green solvent, simple operation, easily available reaction substrates, and excellent product yields, which make it a useful and important supplement to the existing methods.
  • 加载中
    1. [1]

      Seenaiah D, Reddy P R, Reddy G M. Synthesis, Antimicrobial and Cytotoxic Activities of Pyrimidinyl Benzoxazole, Benzothiazole and Benzimidazole[J]. Eur J Med Chem, 2014,77(22):1-7.  

    2. [2]

      Wee D, Yoo S, Kang Y H. Poly(imide-benzoxazole) Gate Insulators with High Thermal Resistance for Solution-processed Flexible Indium-zinc Oxide Thin-film Transistors[J]. J Mater Chem:C, 2014,2(31):6395-6401. doi: 10.1039/C4TC00709C

    3. [3]

      Dick P F, Coelho F L, Rodembusch F S. Amphiphilic ESIPT Benzoxazole Derivatives as Prospective Fluorescent MembraneProbes[J]. Tetrahedron Lett, 2014,55(19):3024-3029. doi: 10.1016/j.tetlet.2014.03.103

    4. [4]

      XIAO Liwei, GAO Hongjie, KONG Jie. Progress in the Synthesis of 2-Substituted Benzoxazoles Derivatives[J]. Chinese J Org Chem, 2014,34(10):1048-1060.  

    5. [5]

      Kawashita Y, Nakamichi N, Kawabata H. Direct and Practical Synthesis of 2-Arylbenzoxazoles Promoted by Activated Carbon[J]. Org Lett, 2003,5(21):3713-3715.  

    6. [6]

      Gu L J, Jin C, G uo, J M. A Novel Strategy for the Construction of Substituted Benzoxazoles via a Tandem Oxidative Process[J]. Chem Commun, 2013,49(93):10968-10970. doi: 10.1039/c3cc46375c

    7. [7]

      Wu M, Hu X, Liu J. Iron-Catalyzed 2-Arylbenzoxazole Formation from o-Nitrophenols and Benzylic Alcohols[J]. Org Lett, 2012,14(11):2722-2725. doi: 10.1021/ol300937z

    8. [8]

      Jin X, Liu Y, Lu Q. Formation of C=N Double BondS by the Release of H2:A New Strategy for Synthesis of Imines and Benzazoles[J]. Org Biomol Chem, 2013,11(23):3776-3780. doi: 10.1039/c3ob40388b

    9. [9]

      Wu X F, Neumann H, Neumann S. Sequential One-pot Synthesis of Benzoxazoles from Aryl Bromides:Successive Palladium- and Copper-catalyzed Reactions[J]. Tetrahedron Lett, 2013,54(24):3040-3042. doi: 10.1016/j.tetlet.2013.03.053

    10. [10]

      Ranjit S, Liu X G. Direct Arylation of Benzothiazoles and Benzoxazoles with Aryl Boronic Acids[J]. Chem Eur J, 2011,17(4):1105-1108. doi: 10.1002/chem.v17.4

    11. [11]

      Guru M M, Ali M A, Punniyamurthy T. Copper(II)-Catalyzed Conversion of Bisaryloxime Ethers to 2-Arylbenzoxazoles via C-H Functionalization/C-N/C-O Bonds Formation[J]. Org Lett, 2011,13(5):1194-1197. doi: 10.1021/ol2000809

    12. [12]

      Hoogendoorn A,van Kasteren H. Transportation Biofuels Novel Pathways for the Production of Ethanol, Biogas and Bio-diesel[M]. RSC Publishing,Cambridge,2010.

    13. [13]

      Pagliaro M,Rossi M. The Future of Glycerol:New Usages for a Versatile Raw Material[M]. RSC Publishing,Cambridge,2008.

    14. [14]

      ZHANG Xiazhong, ZOU Runying, DENG Jiaying. Recent Progress of Glycerol as Green Solvents in Organic Synthesis[J]. Chinese J Org Chem, 2015,35(6):1238-1249. doi: 10.6023/cjoc201410043

    15. [15]

      Díaz-Álvarez A E, Francos J, Lastra-Barreira B. Glycerol and Derived Solvents:New Sustainable Reaction Media for Organic Synthesis[J]. Chem Commun, 2011,47(21):6208-6227.  

    16. [16]

      Gu Y, Jérôme F. Glycerol as A Sustainable Solvent for Green Chemistry[J]. Green Chem, 2010,12(7):1127-1138. doi: 10.1039/c001628d

    17. [17]

      ZHOU Yu, HE Yuan, ZHOU Wenjun. Adsorption of Palladium by Pectin and Its Application in Organic Synthesis[J]. Chinese J Appl Chem, 2015,32(12):1402-1409.  

    18. [18]

      ZHOU Wenjun, ZHOU Dan, ZHANG Xiazhong. Synthesis of Quinoxaline Derivatives Using Glycerol as Phase Transfer Catalyst[J]. Chem Res Appl, 2015,27(6):919-922.  

    19. [19]

      Zhang X H, Zhou W J, Yang M. Microwave-assisted Synthesis of Benzothiazole Derivatives Using Glycerol as Green Solvent[J]. J Chem Res, 2012,36(8):489-491. doi: 10.3184/174751912X13400085970187

    20. [20]

      Blacker A J, Farah M M, Marsden S P. Oxidative Conversion of Amines into Benzoxazoles Using Hydrogen Transfer Catalysis[J]. Tetrahedron Lett, 2009,50(45):6106-6109. doi: 10.1016/j.tetlet.2009.08.042

    21. [21]

      Wang L, Ma Z G, Wei X J. Synthesis of 2-Substituted Pyrimidines and Benzoxazoles via a Visible-light-driven Organocatalytic Aerobic Oxidation:Enhancement of the Reaction Rate and Selectivity by a Base[J]. Green Chem, 2014,16(8):3752-3757. doi: 10.1039/C4GC00337C

  • 加载中
    1. [1]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    2. [2]

      Yanglin Jiang Mingqing Chen Min Liang Yige Yao Yan Zhang Peng Wang Jianping Zhang . Experimental and Theoretical Investigations of Solvent Polarity Effect on ESIPT Mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone. Acta Physico-Chimica Sinica, 2025, 41(2): 100012-. doi: 10.3866/PKU.WHXB202309027

    3. [3]

      Jingyu Cai Xiaoyu Miao Yulai Zhao Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028

    4. [4]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    5. [5]

      Aidang Lu Yunting Liu Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, 2024, 39(8): 241-246. doi: 10.3866/PKU.DXHX202401029

    6. [6]

      Shahua Huang Xiaoming Guo Lin Lin Guangping Chang Sheng Han Zuxin Zhou . Application of “Integration of Industry and Education” in Engineering Chemistry: Improvement of the Pesticide Fipronil Production. University Chemistry, 2024, 39(3): 199-204. doi: 10.3866/PKU.DXHX202309064

    7. [7]

      Zitong Chen Zipei Su Jiangfeng Qian . Aromatic Alkali Metal Reagents: Structures, Properties and Applications. University Chemistry, 2024, 39(8): 149-162. doi: 10.3866/PKU.DXHX202311054

    8. [8]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    9. [9]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    10. [10]

      Jie Li Huida Qian Deyang Pan Wenjing Wang Daliang Zhu Zhongxue Fang . Efficient Synthesis of Anethaldehyde Induced by Visible Light. University Chemistry, 2024, 39(4): 343-350. doi: 10.3866/PKU.DXHX202310076

    11. [11]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    12. [12]

      Yanyang Li Zongpei Zhang Kai Li Shuangquan Zang . Ideological and Political Design for the Comprehensive Experiment of the Synthesis and Aggregation-Induced Emission (AIE) Performance Study of Salicylaldehyde Schiff-Base. University Chemistry, 2024, 39(2): 105-109. doi: 10.3866/PKU.DXHX202307020

    13. [13]

      Hongbo Zhang Yihong Tang Suxia Zhang Yuanting Li . Electrochemical Monitoring of Photocatalytic Degradation of Phenol Pollutants: A Recommended Comprehensive Analytical Chemistry Experiment. University Chemistry, 2024, 39(6): 326-333. doi: 10.3866/PKU.DXHX202310013

    14. [14]

      Yongqing Kuang Jie Liu Jianjun Feng Wen Yang Shuanglian Cai Ling Shi . Experimental Design for the Two-Step Synthesis of Paracetamol from 4-Hydroxyacetophenone. University Chemistry, 2024, 39(8): 331-337. doi: 10.12461/PKU.DXHX202403012

    15. [15]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    16. [16]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    17. [17]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    18. [18]

      Hong CAIJiewen WUJingyun LILixian CHENSiqi XIAODan LI . Synthesis of a zinc-cobalt bimetallic adenine metal-organic framework for the recognition of sulfur-containing amino acids. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 114-122. doi: 10.11862/CJIC.20240382

    19. [19]

      Yujia LITianyu WANGFuxue WANGChongchen WANG . Direct Z-scheme MIL-100(Fe)/BiOBr heterojunctions: Construction and photo-Fenton degradation for sulfamethoxazole. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 481-495. doi: 10.11862/CJIC.20230314

    20. [20]

      Jingzhao Cheng Shiyu Gao Bei Cheng Kai Yang Wang Wang Shaowen Cao . 4-氨基-1H-咪唑-5-甲腈修饰供体-受体型氮化碳光催化剂的构建及其高效光催化产氢研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-. doi: 10.3866/PKU.WHXB202406026

Metrics
  • PDF Downloads(0)
  • Abstract views(499)
  • HTML views(67)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return